Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2017

01.12.2016

Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles

verfasst von: Zulfiqar, Rajwali Khan, Yuliang Yuan, Zainab Iqbal, Jie Yang, Weicheng Wang, Zhizhen Ye, Jianguo Lu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report effect of oxygen vacancies on band gap narrowing, enhancement in electrical conductivity and room temperature ferromagnetism of SnO2 nanoparticles synthesized by simple chemical precipitation approach. As the calcination temperature is elevated from 400 to 800 °C, the average particle size increases from 12.26 to 34.43 nm, with enhanced grain growth and crystalline quality. At low temperatures, these nanoparticles are in a rather oxygen-poor state revealing the presence of many O vacancies and Sn interstitials in SnO2 nanoparticles as in this case Sn+2 is not oxidized completely to Sn+4 and small sized nano particles have more specific surface area, hence defects are more prominent. The oxygen content increases steadily with increasing temperature, with the Sn:O atomic ratio very near to the stoichiometric value of 1:2 at high temperatures suggesting the low density of defects. The optical band gap energies of all SnO2 nanoparticles are in the visible light region, decreasing from 2.89 to 1.35 eV, while room temperature ferromagnetism and electrical conductivity are enhanced with reduced temperatures. The dielectric constant (εr) exhibited dispersion behaviour and the Debye’s relaxation peaks were observed in tanδ. The variation of dielectric properties and ac conductivity revealed that the dispersion is due to Maxwell–Wagner interfacial polarization and hopping of charge carriers between Sn+2/Sn+4. The narrowed band gap energies and enhanced ferromagnetism are mainly attributed to the increase of defects density (e.g., oxygen vacancies). The presence of oxygen vacancies is confirmed by EDX, Raman, PL, XPS, and UV–Vis spectra. The band gap of 1.35 eV is the smallest value for SnO2 reported so far. This rather small band gap, enhanced conductivity and room temperature ferromagnetism demonstrate that SnO2 nanoparticles are very promising in the visible light photo catalysis and optoelectronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Highly photoactive SnO2 nanostructures engineered by electrochemically active biofilm. New J. Chem. 38, 2462–2469 (2014)CrossRef S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Highly photoactive SnO2 nanostructures engineered by electrochemically active biofilm. New J. Chem. 38, 2462–2469 (2014)CrossRef
2.
Zurück zum Zitat L. Li, X. Liu, Y. Zhang, N.T. Nuhfer, K. Barmak, P.A. Salvador, G.S. Rohrer, Visible-light photochemical activity of heterostructured core–shell materials composed of selected ternary titanates and ferrites coated by TiO2. ACS Appl. Mater. Interfaces 5, 5064–5071 (2013)CrossRef L. Li, X. Liu, Y. Zhang, N.T. Nuhfer, K. Barmak, P.A. Salvador, G.S. Rohrer, Visible-light photochemical activity of heterostructured core–shell materials composed of selected ternary titanates and ferrites coated by TiO2. ACS Appl. Mater. Interfaces 5, 5064–5071 (2013)CrossRef
3.
Zurück zum Zitat J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)CrossRef J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4, 4024–4030 (2012)CrossRef
4.
Zurück zum Zitat S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, M.H. Cho, Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5, 9238–9246 (2013)CrossRef S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, M.H. Cho, Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5, 9238–9246 (2013)CrossRef
5.
Zurück zum Zitat X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic Hydrogen generation. Chem. Rev. 110, 6503–6507 (2010)CrossRef X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic Hydrogen generation. Chem. Rev. 110, 6503–6507 (2010)CrossRef
6.
Zurück zum Zitat I. Kocemba, J.M. Rynkowski, The effect of oxygen adsorption on catalytic activity of SnO2 in CO oxidation. Catal. Today 169, 192–199 (2011)CrossRef I. Kocemba, J.M. Rynkowski, The effect of oxygen adsorption on catalytic activity of SnO2 in CO oxidation. Catal. Today 169, 192–199 (2011)CrossRef
7.
Zurück zum Zitat Zulfiqar, Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural, dielectric and ferromagnetic behaviour of (Zn,Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)CrossRef Zulfiqar, Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural, dielectric and ferromagnetic behaviour of (Zn,Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)CrossRef
8.
Zurück zum Zitat P.R. Bueno, S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy. Appl. Phys. 84, 3700–3705 (1998)CrossRef P.R. Bueno, S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy. Appl. Phys. 84, 3700–3705 (1998)CrossRef
9.
Zurück zum Zitat W. Dan, C. Xiangfeng, G. Menglian, Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology 18(185601), 1–4 (2007) W. Dan, C. Xiangfeng, G. Menglian, Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology 18(185601), 1–4 (2007)
10.
Zurück zum Zitat W. Gapel, K.D. Schierbaum, SnO2 sensors: current status and future prospects. Sens. Actuators B 26–27, 1–12 (2011) W. Gapel, K.D. Schierbaum, SnO2 sensors: current status and future prospects. Sens. Actuators B 26–27, 1–12 (2011)
11.
Zurück zum Zitat Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.H. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, 1–6 (2012)CrossRef Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.H. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, 1–6 (2012)CrossRef
12.
Zurück zum Zitat R. Khan, Zulfiqar, M.U. Rahman, Z.U. Rehman, S. Fashu, Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 10532–10540 (2016) R. Khan, Zulfiqar, M.U. Rahman, Z.U. Rehman, S. Fashu, Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 10532–10540 (2016)
13.
Zurück zum Zitat Zulfiqar, R. Khan, M.U. Rahman, Z. Iqbal, Variation of structural, dielectric and magnetic properties of PVP coated γ-Fe2O3 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 12490–12498 (2016) Zulfiqar, R. Khan, M.U. Rahman, Z. Iqbal, Variation of structural, dielectric and magnetic properties of PVP coated γ-Fe2O3 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 12490–12498 (2016)
14.
Zurück zum Zitat P. Kofstad, Defects and transport properties of metal oxides. Oxid. Met. 44(1–2), 3–27 (1995)CrossRef P. Kofstad, Defects and transport properties of metal oxides. Oxid. Met. 44(1–2), 3–27 (1995)CrossRef
15.
Zurück zum Zitat D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2 (110)-1 × 1 surface. Phys. Rev. B: Condens. Matter 38, 2072–2085 (1988)CrossRef D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2 (110)-1 × 1 surface. Phys. Rev. B: Condens. Matter 38, 2072–2085 (1988)CrossRef
16.
Zurück zum Zitat X. Liu, L. Pan, T. Chen, J. Li, K. Yu, Z. Sun, C. Sun, Visible light photocatalytic degradation of methylene blue by SnO2 quantum dots prepared via microwave-assisted method. Catal. Sci. Technol. 3, 1805–1809 (2013)CrossRef X. Liu, L. Pan, T. Chen, J. Li, K. Yu, Z. Sun, C. Sun, Visible light photocatalytic degradation of methylene blue by SnO2 quantum dots prepared via microwave-assisted method. Catal. Sci. Technol. 3, 1805–1809 (2013)CrossRef
17.
Zurück zum Zitat A.K. Sinha, P.K. Manna, M. Pradhan, C. Mondal, S.M. Yusuf, T. Pal, Tin oxide with a p–n heterojunction ensures both UV and visible light photocatalytic activity. RSC Adv. 4, 208–211 (2014)CrossRef A.K. Sinha, P.K. Manna, M. Pradhan, C. Mondal, S.M. Yusuf, T. Pal, Tin oxide with a p–n heterojunction ensures both UV and visible light photocatalytic activity. RSC Adv. 4, 208–211 (2014)CrossRef
18.
Zurück zum Zitat X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)CrossRef X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)CrossRef
19.
Zurück zum Zitat M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photo-electrochemical and photocatalytic studies. Mater. Chem. A 2, 637–644 (2014)CrossRef M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photo-electrochemical and photocatalytic studies. Mater. Chem. A 2, 637–644 (2014)CrossRef
20.
Zurück zum Zitat R. Long, N.J. English, Synergistic effects on band gap-narrowing in Titania by codoping from first-principles calculations. Chem. Mater. 22, 1616–1623 (2010)CrossRef R. Long, N.J. English, Synergistic effects on band gap-narrowing in Titania by codoping from first-principles calculations. Chem. Mater. 22, 1616–1623 (2010)CrossRef
21.
Zurück zum Zitat A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)CrossRef A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)CrossRef
22.
Zurück zum Zitat F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Luminescent characteristics of Eu3+ in SnO2 nanoparticles. Opt. Mater. 25, 59–64 (2004)CrossRef F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Luminescent characteristics of Eu3+ in SnO2 nanoparticles. Opt. Mater. 25, 59–64 (2004)CrossRef
23.
Zurück zum Zitat A. Kar, J. Yang, M. Dutta, M.A. Stroscio, J. Kumari, M. Meyyappan, Rapid thermal annealing effects on tin oxide nanowires prepared by vapor–liquid–solid technique. Nanotechnology 20, 065701–065704 (2009)CrossRef A. Kar, J. Yang, M. Dutta, M.A. Stroscio, J. Kumari, M. Meyyappan, Rapid thermal annealing effects on tin oxide nanowires prepared by vapor–liquid–solid technique. Nanotechnology 20, 065701–065704 (2009)CrossRef
24.
Zurück zum Zitat Asdim, K. Manseki, T. Sugiura, T. Yoshida, Synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells. New J. Chem. 38, 598 (2014)CrossRef Asdim, K. Manseki, T. Sugiura, T. Yoshida, Synthesis of size-controllable SnO2 nanocrystals for dye-sensitized solar cells. New J. Chem. 38, 598 (2014)CrossRef
25.
Zurück zum Zitat B. Jia, W. Jia, F. Qu, X. Wu, General strategy for self-assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv. 3, 12140–12148 (2013)CrossRef B. Jia, W. Jia, F. Qu, X. Wu, General strategy for self-assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv. 3, 12140–12148 (2013)CrossRef
26.
Zurück zum Zitat V.B. Kamble, A.M. Umarji, Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 3, 082120–082125 (2013)CrossRef V.B. Kamble, A.M. Umarji, Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 3, 082120–082125 (2013)CrossRef
27.
Zurück zum Zitat N. Li, G. Liu, Y. Xie, G. Zhou, J. Zhu, F. Li, H.M. Cheng, Effects of oxygen vacancies on the electrochemical performance of tin oxide. Mater. Chem. A 1, 1536–1539 (2013)CrossRef N. Li, G. Liu, Y. Xie, G. Zhou, J. Zhu, F. Li, H.M. Cheng, Effects of oxygen vacancies on the electrochemical performance of tin oxide. Mater. Chem. A 1, 1536–1539 (2013)CrossRef
28.
Zurück zum Zitat H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kal, ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2, 1661–1670 (2008)CrossRef H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kal, ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2, 1661–1670 (2008)CrossRef
29.
Zurück zum Zitat Zulfiqar, Y. Yuan, Q. Jiang, J. Yang, L. Feng, W. Wang, Z. Ye, J. Lu, Variation in luminescence and bandgap of Zn-doped SnO2 nanoparticles with thermal decomposition. J. Mater. Sci.: Mater. Electron. 27, 9541–9549 (2016) Zulfiqar, Y. Yuan, Q. Jiang, J. Yang, L. Feng, W. Wang, Z. Ye, J. Lu, Variation in luminescence and bandgap of Zn-doped SnO2 nanoparticles with thermal decomposition. J. Mater. Sci.: Mater. Electron. 27, 9541–9549 (2016)
30.
Zurück zum Zitat B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Co, Boston, 1956) B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Co, Boston, 1956)
31.
Zurück zum Zitat C.M. Fan, Y. Peng, Q. Zhu, L. Lin, R.X. Wang, A.W. Xu, Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2−x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. Phys. Chem. C 117, 24157–24166 (2013)CrossRef C.M. Fan, Y. Peng, Q. Zhu, L. Lin, R.X. Wang, A.W. Xu, Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2−x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. Phys. Chem. C 117, 24157–24166 (2013)CrossRef
32.
Zurück zum Zitat S. Kalathil, M.M. Khan, A.A. Sajid, M.H. Cho, J. Lee, Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilm and their visible light activity. Nanoscale 5, 6323–6326 (2013)CrossRef S. Kalathil, M.M. Khan, A.A. Sajid, M.H. Cho, J. Lee, Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilm and their visible light activity. Nanoscale 5, 6323–6326 (2013)CrossRef
33.
Zurück zum Zitat Zulfiqar, Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural and optical properties of (Zn, Co) co-doped SnO2 nano particles. J. Mater. Sci. Mater. Electron. 27, 12119–12127 (2016) Zulfiqar, Y. Yuan, J. Yang, W. Wang, Z. Ye, J. Lu, Structural and optical properties of (Zn, Co) co-doped SnO2 nano particles. J. Mater. Sci. Mater. Electron. 27, 12119–12127 (2016)
34.
Zurück zum Zitat M. Ghosh, V. Pralong, A. Wattiaux, A. Sleight, M. Subramanian, Tin (II) doped anatase (TiO2) nanoparticles: a potential route to “greener” yellow pigments. Chem. Asian J. 4, 881–885 (2009)CrossRef M. Ghosh, V. Pralong, A. Wattiaux, A. Sleight, M. Subramanian, Tin (II) doped anatase (TiO2) nanoparticles: a potential route to “greener” yellow pigments. Chem. Asian J. 4, 881–885 (2009)CrossRef
35.
Zurück zum Zitat J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. Appl. Phys. 40, 3524 (1977)CrossRef J.C.C. Fan, J.B. Goodenough, X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. Appl. Phys. 40, 3524 (1977)CrossRef
36.
Zurück zum Zitat S. Park, T. Ikegami, K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513, 90 (2006)CrossRef S. Park, T. Ikegami, K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films 513, 90 (2006)CrossRef
37.
Zurück zum Zitat M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134 (2000)CrossRef M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134 (2000)CrossRef
38.
Zurück zum Zitat S. Mehraj, M.S. Ansari, A.A. Al-Ghamdi, Alimuddin, Annealing dependent oxygen vacancies in SnO2 nanoparticles: structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 171, 109–118 (2016)CrossRef S. Mehraj, M.S. Ansari, A.A. Al-Ghamdi, Alimuddin, Annealing dependent oxygen vacancies in SnO2 nanoparticles: structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 171, 109–118 (2016)CrossRef
39.
Zurück zum Zitat J.C. Maxwell, Electricity and Magnetism (Clarendon, Oxford, 1892) J.C. Maxwell, Electricity and Magnetism (Clarendon, Oxford, 1892)
40.
Zurück zum Zitat K.W. Wagner, Ann. Phys. 40, 817 (1973) K.W. Wagner, Ann. Phys. 40, 817 (1973)
41.
Zurück zum Zitat M.B. Reddy, P.V. Reddy, Low-frequency dielectric behaviour of mixed Li-Ti ferrites. J. Phys. D. Appl. Phys. 24(6), 975–981 (1991)CrossRef M.B. Reddy, P.V. Reddy, Low-frequency dielectric behaviour of mixed Li-Ti ferrites. J. Phys. D. Appl. Phys. 24(6), 975–981 (1991)CrossRef
42.
Zurück zum Zitat A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983) A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)
43.
Zurück zum Zitat S. Mehraj, Ansari, Alimuddin, Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior. Phys. B Condens. Matter 430, 106–113 (2013)CrossRef S. Mehraj, Ansari, Alimuddin, Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior. Phys. B Condens. Matter 430, 106–113 (2013)CrossRef
44.
Zurück zum Zitat V.B. Kamble, S.V. Bhat, A.M. Umarji, Investigating thermal stability of structural defects and its effect on d0 ferromagnetism in undoped SnO2. J. Appl. Phys. 113, 244307 (2013)CrossRef V.B. Kamble, S.V. Bhat, A.M. Umarji, Investigating thermal stability of structural defects and its effect on d0 ferromagnetism in undoped SnO2. J. Appl. Phys. 113, 244307 (2013)CrossRef
45.
Zurück zum Zitat C.Z. Yuan, C.Z. Quan, P.R. Kun, W.S. Jie, Vacancy-induced ferromagnetism in SnO2 nanocrystals: a positron annihilation study. Chin. Phys. Lett. 30(2), 1–4 (2013) C.Z. Yuan, C.Z. Quan, P.R. Kun, W.S. Jie, Vacancy-induced ferromagnetism in SnO2 nanocrystals: a positron annihilation study. Chin. Phys. Lett. 30(2), 1–4 (2013)
46.
Zurück zum Zitat S. Mehraj, M.S. Ansari, Alimuddin, Rutile type SnO2 thin films annealed at different temperature: structural, dielectric, impedance and ferromagnetic properties. Thin Solid Films 589, 57–65 (2015)CrossRef S. Mehraj, M.S. Ansari, Alimuddin, Rutile type SnO2 thin films annealed at different temperature: structural, dielectric, impedance and ferromagnetic properties. Thin Solid Films 589, 57–65 (2015)CrossRef
47.
Zurück zum Zitat S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Structural and magnetic properties of In3þ substituted NiFe2O4. Mater. Chem. Phys. 117(1), 163–168 (2009)CrossRef S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Structural and magnetic properties of In3þ substituted NiFe2O4. Mater. Chem. Phys. 117(1), 163–168 (2009)CrossRef
48.
Zurück zum Zitat J.Q. Hu, Y. Bando, Q. Liu, D. Golberg, Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater. 13(6), 493–496 (2003)CrossRef J.Q. Hu, Y. Bando, Q. Liu, D. Golberg, Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater. 13(6), 493–496 (2003)CrossRef
Metadaten
Titel
Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles
verfasst von
Zulfiqar
Rajwali Khan
Yuliang Yuan
Zainab Iqbal
Jie Yang
Weicheng Wang
Zhizhen Ye
Jianguo Lu
Publikationsdatum
01.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6101-1

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Science: Materials in Electronics 6/2017 Zur Ausgabe

Neuer Inhalt