Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Vertical Gallium Nitride Technology

Materials, Devices and Applications

verfasst von : Srabanti Chowdhury

Erschienen in: Power GaN Devices

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evolution of LEDs, lasers and HEMTs using gallium nitride as the semiconductor has taught us about its many unique capabilities including high breakdown electric field, polarization-induced high charge density in the channel and reliable operation at high temperature, to name a few. These superior performances due to GaN’s exceptional material properties make GaN ideal for power switching besides RF applications. Thus, power electronics got recently added to GaN’s portfolio showing great progress. Lateral HEMTs, already available as products for RF application, were the obvious first choice for designing power electronic switches. The last ten years have witnessed an incredibly fast advancement in the lateral HEMT technology building a market space for GaN in medium (up to 15 kW) power electronic applications. Although the maximum industrially feasible and economically viable limits of power conversion using the lateral GaN technology are yet to be determined, vertical devices start to look attractive for power conversion ranging above 15–20 kW. The availability of bulk GaN substrates has stimulated the development of vertical GaN technology. Vertical GaN devices, analogous to Si-DMOSFETs in some ways, can uniquely be designed with a high-mobility AlGaN/GaN channel combined to a thick-drift region in bulk GaN to offer very low on-resistance and high breakdown voltage—the two key parameters of benchmarking a power switch. While the channel of a vertical device can be designed either horizontally or vertically along the sidewalls, the peak electric fields in these devices are always buried in the bulk material, far from the surface. This allows the device to be reasonably dispersion-free without involving field plates, unlike used in lateral HEMTs. Attaining high electron mobility in bulk GaN that forms the drift region will be of key importance to outperform the competing technologies based on Si and SiC. This chapter will focus on the design space, challenges, current performance, cost and roadmap of vertical GaN devices for next-generation power conversion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jayant Baliga B (2008) Fundamentals of power semiconductor devices. Springer, New York Jayant Baliga B (2008) Fundamentals of power semiconductor devices. Springer, New York
2.
Zurück zum Zitat Kadavelugu A, Baliga V, Bhattacharya S, Das M, Agarwal A (2011) Zero voltage switching performance of 1200 V SiC MOSFET, 1200 V silicon IGBT and 900 V CoolMOS MOSFET. In: IEEE energy conversion congress and exposition (ECCE), Phoenix, AZ Kadavelugu A, Baliga V, Bhattacharya S, Das M, Agarwal A (2011) Zero voltage switching performance of 1200 V SiC MOSFET, 1200 V silicon IGBT and 900 V CoolMOS MOSFET. In: IEEE energy conversion congress and exposition (ECCE), Phoenix, AZ
3.
Zurück zum Zitat Mishra UK, Parikh P, Wu YF (2002) AlGaN/GaN HEMTs-an overview of device operation and application. Proc IEEE 90(6):1022–1031CrossRef Mishra UK, Parikh P, Wu YF (2002) AlGaN/GaN HEMTs-an overview of device operation and application. Proc IEEE 90(6):1022–1031CrossRef
4.
Zurück zum Zitat Dora Y, Chakraborty A, McCarthy L, Keller S, Denbaars SP, Mishra UK (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett 27(9):713–715CrossRef Dora Y, Chakraborty A, McCarthy L, Keller S, Denbaars SP, Mishra UK (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett 27(9):713–715CrossRef
5.
Zurück zum Zitat Selvaraj SL, Suzue T, Egawa T (2009) Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. IEEE Electron Device Lett 30(6):587–589CrossRef Selvaraj SL, Suzue T, Egawa T (2009) Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. IEEE Electron Device Lett 30(6):587–589CrossRef
6.
Zurück zum Zitat Lu B, Palacios T (2010) High breakdown (>1500 V) AlGaN/GaN HEMTs by substrate-transfer technology. IEEE Electron Device Lett 31(9):951–953CrossRef Lu B, Palacios T (2010) High breakdown (>1500 V) AlGaN/GaN HEMTs by substrate-transfer technology. IEEE Electron Device Lett 31(9):951–953CrossRef
7.
Zurück zum Zitat Chu R, Corrion A, Chen M, Ray L, Wong D, Zehnder D, Hughes B, Boutros K (2011) 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on–resistance. IEEE Electron Device Lett 32(5):632–634CrossRef Chu R, Corrion A, Chen M, Ray L, Wong D, Zehnder D, Hughes B, Boutros K (2011) 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on–resistance. IEEE Electron Device Lett 32(5):632–634CrossRef
8.
Zurück zum Zitat Chowdhury S, Mishra UK (2013) Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Trans Electron Devices 60(10):3060–3066CrossRef Chowdhury S, Mishra UK (2013) Lateral and vertical transistors using the AlGaN/GaN heterostructure. IEEE Trans Electron Devices 60(10):3060–3066CrossRef
9.
Zurück zum Zitat Ben-Yaacov I, Seck Y-K, Mishra UK, Denbaars SP (2004) AlGaN/GaN current aperture vertical electron transistors with regrown channels. J Appl Phys 95(4):2073–2078CrossRef Ben-Yaacov I, Seck Y-K, Mishra UK, Denbaars SP (2004) AlGaN/GaN current aperture vertical electron transistors with regrown channels. J Appl Phys 95(4):2073–2078CrossRef
10.
Zurück zum Zitat Gao Y, Stonas A, Ben-Yaacov I, Mishra U, Denbaars S, Hu E (2003) AlGaN∕GaN current aperture vertical electron transistors fabricated by photoelectrochemical wet etching. Electron Lett 39(1):148CrossRef Gao Y, Stonas A, Ben-Yaacov I, Mishra U, Denbaars S, Hu E (2003) AlGaN∕GaN current aperture vertical electron transistors fabricated by photoelectrochemical wet etching. Electron Lett 39(1):148CrossRef
11.
Zurück zum Zitat Chowdhury S, Swenson BL, Mishra UK (2008) Enhancement and depletion mode AlGaN/GaN CAVET with Mg-Ion-implanted GaN as current blocking layer. IEEE Electron Device Lett 29(6):543–545CrossRef Chowdhury S, Swenson BL, Mishra UK (2008) Enhancement and depletion mode AlGaN/GaN CAVET with Mg-Ion-implanted GaN as current blocking layer. IEEE Electron Device Lett 29(6):543–545CrossRef
12.
Zurück zum Zitat Chowdhury S, Wong MH, Swenson BL, Mishra UK (2012) CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett 33(1):41–43CrossRef Chowdhury S, Wong MH, Swenson BL, Mishra UK (2012) CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion. IEEE Electron Device Lett 33(1):41–43CrossRef
13.
Zurück zum Zitat Kanechika M, Sugimoto M, Soeima N, Ueda H, Ishiguro O, Kodama M, Hayashi E, Itoh K, Uesugi T, Kachi T (2007) A vertical insulated gate AlGaN/GaN heterojunction field effect transistor. Jpn J Appl Phys 46(21):L503–L505CrossRef Kanechika M, Sugimoto M, Soeima N, Ueda H, Ishiguro O, Kodama M, Hayashi E, Itoh K, Uesugi T, Kachi T (2007) A vertical insulated gate AlGaN/GaN heterojunction field effect transistor. Jpn J Appl Phys 46(21):L503–L505CrossRef
14.
Zurück zum Zitat Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H (2008) Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates. Appl Phys Express 1:011105-1–011105-3 Otake H, Chikamatsu K, Yamaguchi A, Fujishima T, Ohta H (2008) Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates. Appl Phys Express 1:011105-1–011105-3
15.
Zurück zum Zitat Nie H, Diduck Q, Alvarez B, Edwards A, Kayes B, Zhang M, Bour D, Kizilyalli DI (2014) 1.5 kV and 2.2 mΩ cm2 vertical GaN transistors on bulk-GaN substrates. IEEE Electron Device Lett 35(9):939–941 Nie H, Diduck Q, Alvarez B, Edwards A, Kayes B, Zhang M, Bour D, Kizilyalli DI (2014) 1.5 kV and 2.2 mΩ cm2 vertical GaN transistors on bulk-GaN substrates. IEEE Electron Device Lett 35(9):939–941
16.
Zurück zum Zitat Oka T, Ina T, Ueno Y, Nishii J (2015) 1.8 mΩ cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation. Appl Phys Express 8(5):054101CrossRef Oka T, Ina T, Ueno Y, Nishii J (2015) 1.8 mΩ cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation. Appl Phys Express 8(5):054101CrossRef
17.
Zurück zum Zitat Okada M, Saitoh Y, Yokoyama M, Nakata K, Yaegassi S, Katayama K, Ueno M, Kiyama M, Katsuyama T, Nakamura T (2010) Novel vertical heterojunction field-effect transistors with re-grown AlGaN/GaN two-dimensional electron gas channels on GaN substrates. Appl Phys Express 3(5):054201CrossRef Okada M, Saitoh Y, Yokoyama M, Nakata K, Yaegassi S, Katayama K, Ueno M, Kiyama M, Katsuyama T, Nakamura T (2010) Novel vertical heterojunction field-effect transistors with re-grown AlGaN/GaN two-dimensional electron gas channels on GaN substrates. Appl Phys Express 3(5):054201CrossRef
18.
Zurück zum Zitat Diduck Q, Nie H, Alvarez B, Edwards A, Bour D, Aktas O, Disney D, Kizilyalli IC (2013) 1000 V vertical JFET using bulk GaN. ECS Trans 58(4):295–298CrossRef Diduck Q, Nie H, Alvarez B, Edwards A, Bour D, Aktas O, Disney D, Kizilyalli IC (2013) 1000 V vertical JFET using bulk GaN. ECS Trans 58(4):295–298CrossRef
19.
Zurück zum Zitat Oka T, Ueno Y, Ina T, Hasegawa K (2014) Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl Phys Express 7(2):021002CrossRef Oka T, Ueno Y, Ina T, Hasegawa K (2014) Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl Phys Express 7(2):021002CrossRef
20.
Zurück zum Zitat Yeluri R, Lu J, Hurni CA, Browne DA, Chowdhury S, Keller S, Speck JS, Mishra UK (2015) Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction. Appl Phys Lett 106(18):183502CrossRef Yeluri R, Lu J, Hurni CA, Browne DA, Chowdhury S, Keller S, Speck JS, Mishra UK (2015) Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction. Appl Phys Lett 106(18):183502CrossRef
21.
Zurück zum Zitat Ueda T, Tanaka T, Ueda D (2007) Gate injection transistor (GIT)-A normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Devices 54(12):3393–3399CrossRef Ueda T, Tanaka T, Ueda D (2007) Gate injection transistor (GIT)-A normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Devices 54(12):3393–3399CrossRef
22.
Zurück zum Zitat Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A, Hara N (2010) Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics. IEEE Electron Device Lett 31(3):189–191CrossRef Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A, Hara N (2010) Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics. IEEE Electron Device Lett 31(3):189–191CrossRef
23.
Zurück zum Zitat Cai Y, Zhou Y, Chen KJ, Lau KM (2005) High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett 26(7):435–437CrossRef Cai Y, Zhou Y, Chen KJ, Lau KM (2005) High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett 26(7):435–437CrossRef
24.
Zurück zum Zitat Niiyama Y, Kambayashi H, Ootomo S, Nomura ST, Yoshida S, Chow TP (2008) Over 2 A operation at 250 °C of GaN metal-oxide semiconductor field effect transistors on sapphire substrates. Jpn J Appl Phys 47(9):7128–7130CrossRef Niiyama Y, Kambayashi H, Ootomo S, Nomura ST, Yoshida S, Chow TP (2008) Over 2 A operation at 250 °C of GaN metal-oxide semiconductor field effect transistors on sapphire substrates. Jpn J Appl Phys 47(9):7128–7130CrossRef
25.
Zurück zum Zitat Kanechika M, Uesugi T, Kachi T (2010) Advanced SiC and GaN power electronics for automotive systems. In: 2010 international electron devices meeting Kanechika M, Uesugi T, Kachi T (2010) Advanced SiC and GaN power electronics for automotive systems. In: 2010 international electron devices meeting
26.
Zurück zum Zitat Kruszewski P, Jasinski J, Sochacki T, Bockowski M, Jachymek R, Prystawko P, Zajac M, Kucharski R, Leszczynski M (2014) Vertical schottky diodes grown on low-dislocation density bulk GaN substrate. The international workshop on nitride semiconductor Kruszewski P, Jasinski J, Sochacki T, Bockowski M, Jachymek R, Prystawko P, Zajac M, Kucharski R, Leszczynski M (2014) Vertical schottky diodes grown on low-dislocation density bulk GaN substrate. The international workshop on nitride semiconductor
27.
Zurück zum Zitat Ji D, Chowdhury S (2015) Design of 1.2 kV power switches with low RON using GaN-based vertical JFET. IEEE Trans Electron Devices 62(8):2571–2578CrossRef Ji D, Chowdhury S (2015) Design of 1.2 kV power switches with low RON using GaN-based vertical JFET. IEEE Trans Electron Devices 62(8):2571–2578CrossRef
28.
Zurück zum Zitat Chowdhury S (2010) PhD Thesis. AlGaN/GaN CAVETs for high power switching application Chowdhury S (2010) PhD Thesis. AlGaN/GaN CAVETs for high power switching application
29.
Zurück zum Zitat Anderson T, Kub F, Eddy C, Hite J, Feigelson B, Mastro M, Hobart K, Tadjer M (2014) Activation of Mg implanted in GaN by multicycle rapid thermal annealing. Electron Lett 50(3):197–198CrossRef Anderson T, Kub F, Eddy C, Hite J, Feigelson B, Mastro M, Hobart K, Tadjer M (2014) Activation of Mg implanted in GaN by multicycle rapid thermal annealing. Electron Lett 50(3):197–198CrossRef
30.
Zurück zum Zitat Ben Yaacov I (2004) PhD Thesis. AlGaN/GaN current aperture vertical electron transistor Ben Yaacov I (2004) PhD Thesis. AlGaN/GaN current aperture vertical electron transistor
31.
Zurück zum Zitat Kachi T (2014) Recent progress of GaN power devices for automotive applications. Jpn J Appl Phys 53(10):100210CrossRef Kachi T (2014) Recent progress of GaN power devices for automotive applications. Jpn J Appl Phys 53(10):100210CrossRef
Metadaten
Titel
Vertical Gallium Nitride Technology
verfasst von
Srabanti Chowdhury
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-43199-4_5