Skip to main content
Erschienen in: Calcolo 2/2022

01.06.2022

Virtual element analysis of nonlocal coupled parabolic problems on polygonal meshes

verfasst von: M. Arrutselvi, D. Adak, E. Natarajan, S. Roy, S. Natarajan

Erschienen in: Calcolo | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we consider the discretization of nonlocal coupled parabolic problem within the framework of the virtual element method. The presence of nonlocal coefficients not only makes the computation of the Jacobian more expensive in Newton’s method, but also destroys the sparsity of the Jacobian. In order to resolve this problem, an equivalent formulation that has very simple Jacobian is proposed. We derive the error estimates in the \(L^2\) and \(H^1\) norms. To further reduce the computational complexity, a linearized scheme without compromising the rate of convergence in different norms is proposed. Finally, the theoretical results are justified through numerical experiments over arbitrary polygonal meshes.
Literatur
1.
Zurück zum Zitat Capasso, V., Maddalena, L.: Convergence to equilibrium states for a reaction–diffusion system modelling the spread of a class of bacterial and viral diseases. J. Math. Biol. 13, 173–184 (1981)MathSciNetMATHCrossRef Capasso, V., Maddalena, L.: Convergence to equilibrium states for a reaction–diffusion system modelling the spread of a class of bacterial and viral diseases. J. Math. Biol. 13, 173–184 (1981)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Bendahmane, M., Sepúlveda, M.A.: Convergence of finite volume scheme for nonlocal reaction diffusion systems modelling an epidemic disease. Discret. Contin. Dyn. Syst. Ser. B 11(4), 823–853 (2009)MathSciNetMATH Bendahmane, M., Sepúlveda, M.A.: Convergence of finite volume scheme for nonlocal reaction diffusion systems modelling an epidemic disease. Discret. Contin. Dyn. Syst. Ser. B 11(4), 823–853 (2009)MathSciNetMATH
3.
Zurück zum Zitat Xu, D., Zhao, X.-Q.: Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discret. Contin. Dyn. Syst. Ser. 4, 1043–1056 (2005)MathSciNetMATH Xu, D., Zhao, X.-Q.: Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discret. Contin. Dyn. Syst. Ser. 4, 1043–1056 (2005)MathSciNetMATH
4.
Zurück zum Zitat Shi, C., Roberts, G., Kiserow, D.: Effect of supercritical carbon dioxide on the diffusion coefficient of phenol in poly(bisphenol a carbonate). J. Polym. Sci. Part B 41, 1143–1156 (2003)CrossRef Shi, C., Roberts, G., Kiserow, D.: Effect of supercritical carbon dioxide on the diffusion coefficient of phenol in poly(bisphenol a carbonate). J. Polym. Sci. Part B 41, 1143–1156 (2003)CrossRef
5.
Zurück zum Zitat Habib, S., Molina-Paris, C., Deisboeck, T.: Complex dynamics of tumors: modeling an emerging brain tumor system with coupled reaction–diffusion equations. Physica A 327, 501–524 (2003)MATHCrossRef Habib, S., Molina-Paris, C., Deisboeck, T.: Complex dynamics of tumors: modeling an emerging brain tumor system with coupled reaction–diffusion equations. Physica A 327, 501–524 (2003)MATHCrossRef
6.
Zurück zum Zitat Raposo, C.A., Sepúlveda, M., Villagrán, O.V., Pereira, D.C., Santos, M.L.: Solution and asymptotic behaviour for a nonlocal coupled system of reaction–diffusion. Acta Applicandae Mathematicae 102(1), 37–56 (2008)MathSciNetMATHCrossRef Raposo, C.A., Sepúlveda, M., Villagrán, O.V., Pereira, D.C., Santos, M.L.: Solution and asymptotic behaviour for a nonlocal coupled system of reaction–diffusion. Acta Applicandae Mathematicae 102(1), 37–56 (2008)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Chaudhary, S., Srivastava, V., Kumar, V.S., Srinivasan, B.: Finite element approximation of nonlocal parabolic problem. Numer. Methods Partial Differ. Equ. 33(3), 786–813 (2017)MathSciNetMATHCrossRef Chaudhary, S., Srivastava, V., Kumar, V.S., Srinivasan, B.: Finite element approximation of nonlocal parabolic problem. Numer. Methods Partial Differ. Equ. 33(3), 786–813 (2017)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Anaya, V., Bendahmane, M., Mora, D., Sepúlveda, M.: A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40(2), 1544–1576 (2020)MathSciNetMATHCrossRef Anaya, V., Bendahmane, M., Mora, D., Sepúlveda, M.: A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40(2), 1544–1576 (2020)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, vol. 11. Springer, Berlin (2014)MATH Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, vol. 11. Springer, Berlin (2014)MATH
10.
Zurück zum Zitat Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113(3), 325–356 (2009)MathSciNetMATHCrossRef Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113(3), 325–356 (2009)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48(4), 1419–1443 (2010)MathSciNetMATHCrossRef Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48(4), 1419–1443 (2010)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)MathSciNetMATHCrossRef Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MathSciNetMATHCrossRef Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13(1), 129–163 (2006)MathSciNetMATHCrossRef Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13(1), 129–163 (2006)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Sze, K., Sheng, N.: Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics. Finite Elem. Anal. Des. 42(2), 107–129 (2005)CrossRef Sze, K., Sheng, N.: Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics. Finite Elem. Anal. Des. 42(2), 107–129 (2005)CrossRef
16.
Zurück zum Zitat Bishop, J.: A displacement based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Eng. 97, 1–31 (2014)MathSciNetMATHCrossRef Bishop, J.: A displacement based finite element formulation for general polyhedra using harmonic shape functions. Int. J. Numer. Methods Eng. 97, 1–31 (2014)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Natarajan, S., Ooi, E.T., Chiong, I., Song, C.: Convergence and accuracy of displacement based finite element formulation over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation. Finite Elem. Anal. Des. 85, 101–122 (2014)MathSciNetCrossRef Natarajan, S., Ooi, E.T., Chiong, I., Song, C.: Convergence and accuracy of displacement based finite element formulation over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation. Finite Elem. Anal. Des. 85, 101–122 (2014)MathSciNetCrossRef
18.
Zurück zum Zitat Ooi, E., Aaputra, A., Natarajan, S., Ooi, E., Song, C.: A dual scaled boundary finite element formulation over arbitrary faceted star convex polyhedra. Comput. Mech. 66, 27–47 (2020)MathSciNetMATHCrossRef Ooi, E., Aaputra, A., Natarajan, S., Ooi, E., Song, C.: A dual scaled boundary finite element formulation over arbitrary faceted star convex polyhedra. Comput. Mech. 66, 27–47 (2020)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetMATHCrossRef Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)MathSciNetMATHCrossRef Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)MathSciNetMATHCrossRef
21.
22.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)MathSciNetMATHCrossRef Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Floater, M.S., Lai, M.-J.: Polygonal spline spaces and the numerical solution of the Poisson equation. SIAM J Numer. Anal. 54, 794–827 (2016)MathSciNetCrossRef Floater, M.S., Lai, M.-J.: Polygonal spline spaces and the numerical solution of the Poisson equation. SIAM J Numer. Anal. 54, 794–827 (2016)MathSciNetCrossRef
24.
Zurück zum Zitat Sinu, A., Natarajan, S., Krishnapillai, S.: Quadratic serendipity finite elements over convex polyhedra. Int. J. Numer. Methods Eng. 113, 109–129 (2018)MathSciNetCrossRef Sinu, A., Natarajan, S., Krishnapillai, S.: Quadratic serendipity finite elements over convex polyhedra. Int. J. Numer. Methods Eng. 113, 109–129 (2018)MathSciNetCrossRef
25.
Zurück zum Zitat Beirão da Veiga, L., Mora, D., Vacca, G.: The Stokes complex for virtual elements with application to Navier–Stokes flows. J. Sci. Comput. 81(2), 990–1018 (2019)MathSciNetMATHCrossRef Beirão da Veiga, L., Mora, D., Vacca, G.: The Stokes complex for virtual elements with application to Navier–Stokes flows. J. Sci. Comput. 81(2), 990–1018 (2019)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Beirão da Veiga, L., Mora, D., Rivera, G.: Virtual elements for a shear-deflection formulation of Reissner–Mindlin plates. Math. Comput. 88(315), 149–178 (2019)MathSciNetMATHCrossRef Beirão da Veiga, L., Mora, D., Rivera, G.: Virtual elements for a shear-deflection formulation of Reissner–Mindlin plates. Math. Comput. 88(315), 149–178 (2019)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)MathSciNetMATHCrossRef Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Adak, D., Natarajan, S.: Virtual element method for semilinear sine-Gordon equation over polygonal mesh using product approximation technique. Math. Comput. Simul. 172, 224–243 (2020)MathSciNetMATHCrossRef Adak, D., Natarajan, S.: Virtual element method for semilinear sine-Gordon equation over polygonal mesh using product approximation technique. Math. Comput. Simul. 172, 224–243 (2020)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Adak, D., Natarajan, S.: Virtual element method for a nonlocal elliptic problem of Kirchhoff type on polygonal meshes. Comput. Math. Appl. 79(10), 2858–2871 (2020)MathSciNetMATHCrossRef Adak, D., Natarajan, S.: Virtual element method for a nonlocal elliptic problem of Kirchhoff type on polygonal meshes. Comput. Math. Appl. 79(10), 2858–2871 (2020)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. 40(4), 2450–2472 (2020)MathSciNetMATHCrossRef Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. 40(4), 2450–2472 (2020)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Gardini, F., Vacca, G.: Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38(4), 2026–2054 (2018)MathSciNetMATHCrossRef Gardini, F., Vacca, G.: Virtual element method for second-order elliptic eigenvalue problems. IMA J. Numer. Anal. 38(4), 2026–2054 (2018)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Gatica, G., Munar, M., Sequeira, F.: A mixed virtual element method for the Navier–Stokes equations. Math. Models Methods Appl. Sci. 28(14), 2719–2762 (2018)MathSciNetMATHCrossRef Gatica, G., Munar, M., Sequeira, F.: A mixed virtual element method for the Navier–Stokes equations. Math. Models Methods Appl. Sci. 28(14), 2719–2762 (2018)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Cáceres, E., Gatica, G.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37(1), 296–331 (2017)MathSciNetMATHCrossRef Cáceres, E., Gatica, G.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37(1), 296–331 (2017)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Mascotto, L.: Ill-conditioning in the virtual element method: stabilizations and bases. Numer. Meth. Partial Differ. Equ. 34(4), 1258–1281 (2018)MathSciNetMATHCrossRef Mascotto, L.: Ill-conditioning in the virtual element method: stabilizations and bases. Numer. Meth. Partial Differ. Equ. 34(4), 1258–1281 (2018)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)MathSciNetMATHCrossRef Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)MathSciNetMATHCrossRef Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50(3), 727–747 (2016)MathSciNetMATHCrossRef
37.
38.
Zurück zum Zitat Chaudhary, S.: Finite element analysis of nonlocal coupled parabolic problem using Newton’s method. Comput. Math. Appl. 75(3), 981–1003 (2018)MathSciNetMATHCrossRef Chaudhary, S.: Finite element analysis of nonlocal coupled parabolic problem using Newton’s method. Comput. Math. Appl. 75(3), 981–1003 (2018)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)MathSciNetMATHCrossRef Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)MathSciNetMATH Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)MathSciNetMATH
41.
Zurück zum Zitat Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)MathSciNetMATHCrossRef Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Beirão da Veiga, L., Dassi, F., Russo, A.: High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74(5), 1110–1122 (2017)MathSciNetMATHCrossRef Beirão da Veiga, L., Dassi, F., Russo, A.: High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74(5), 1110–1122 (2017)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(04), 729–750 (2016)MathSciNetMATHCrossRef Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(04), 729–750 (2016)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod (1969) Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod (1969)
45.
Zurück zum Zitat Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 3. Springer, Berlin (2008)MATHCrossRef Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 3. Springer, Berlin (2008)MATHCrossRef
46.
Zurück zum Zitat Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019)MathSciNetMATHCrossRef Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019)MathSciNetMATHCrossRef
Metadaten
Titel
Virtual element analysis of nonlocal coupled parabolic problems on polygonal meshes
verfasst von
M. Arrutselvi
D. Adak
E. Natarajan
S. Roy
S. Natarajan
Publikationsdatum
01.06.2022
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 2/2022
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-022-00459-4

Weitere Artikel der Ausgabe 2/2022

Calcolo 2/2022 Zur Ausgabe

Premium Partner