Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 7/2024

18.06.2022 | Original Article

Watermelon peel hydrolysate production optimization and ethanologenesis employing yeast isolates

verfasst von: Asma Chaudhary, Ali Hussain, Qurat-ul-Ain Ahmad, Tooba Ahmad, Qandeel Minahal, Shuichi Karita, Balakrishnan Deepanraj

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Securing “energy from waste” appeared as the most engrossed research area to find out global solutions for waste disposal and energy production. Watermelon peels (WMPs) are discarded as bulk waste in the whole oriental region that demands appropriate disposal to save environment from pollution. This study investigates the potential of yeast employing WMPs that embodies significant sugars to be fermented into ethanol. For this purpose, WMPs were subjected to dilute sulfuric acid hydrolysis under optimized conditions (6% H2SO4 at 50 °C for 60 min) elucidated by response surface methodology (RSM) of central composite design (CCD). The experimental design dealt with the optimization of fermentation influencing independent parameters which included pretreated WMP hydrolysate, synthetic medium ratio (X1), hydrolysis temperature (X2), and incubation period (X3) for maximal ethanol yield while employing standard (Saccharomyces cerevisiae K7) and experimental (Metchnikowia cibodasensis Y34) yeast isolates. The significance of the model for experimental yeast was envisaged by 6.22 F value (0.0060 P), 0.8616 R2 and 8.393 adequate precision. The optimized parameters were found as 52.03 mL WMP hydrolysate concentration at 29.46 °C after an incubation period of 15 days. Maximal ethanol yield (g/g reducing sugars) obtained from Saccharomyces cerevisiae K7 was 0.33 ± 0.05, while Metchnikowia cibodasensis Y34 showed as 0.38 ± 0.01. From this research, the ethanologenic and ethanol tolerant potential of yeast Metchnikowia cibodasensis Y34 is apparent to valorize WMPs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenerg 24(6):475–486CrossRef Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenerg 24(6):475–486CrossRef
2.
Zurück zum Zitat Rivas-Cantu RC, Jones KD, Mills PL (2013) A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manage Res 31(4):413–420CrossRef Rivas-Cantu RC, Jones KD, Mills PL (2013) A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manage Res 31(4):413–420CrossRef
3.
Zurück zum Zitat Ch AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32 Ch AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32
4.
Zurück zum Zitat Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bioethanol from lignocellulose: status, perspectives, and challenges in Malaysia. Biores Technol 101(13):4834–4841CrossRef Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bioethanol from lignocellulose: status, perspectives, and challenges in Malaysia. Biores Technol 101(13):4834–4841CrossRef
5.
Zurück zum Zitat Ghosh P, Ghose TK (2003) Bioethanol in India: recent past and emerging future. Biotechnology in India II:1–27 Ghosh P, Ghose TK (2003) Bioethanol in India: recent past and emerging future. Biotechnology in India II:1–27
6.
Zurück zum Zitat Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92CrossRef Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92CrossRef
7.
Zurück zum Zitat Hill J (2009) Environmental costs and benefits of transportation biofuel production from food-and lignocellulose-based energy crops: a review. Sustain Agric :125–139 Hill J (2009) Environmental costs and benefits of transportation biofuel production from food-and lignocellulose-based energy crops: a review. Sustain Agric :125–139
8.
Zurück zum Zitat Asli MS (2010) A study on SOE efficient parameters in batch fermentation of ethanol using Saccharomyces cerevesiae SC1 extracted from fermented siahe sardasht pomace. Afr J Biotechnol 9(20) Asli MS (2010) A study on SOE efficient parameters in batch fermentation of ethanol using Saccharomyces cerevesiae SC1 extracted from fermented siahe sardasht pomace. Afr J Biotechnol 9(20)
9.
Zurück zum Zitat Fish WW, Bruton BD, Russo VM (2009) Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnol Biofuels 2(1):1–9CrossRef Fish WW, Bruton BD, Russo VM (2009) Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnol Biofuels 2(1):1–9CrossRef
10.
Zurück zum Zitat Johnson JT, Iwang EU, Hemen JT, Odey MO, Efiong EE, Eteng OE (2012) Evaluation of anti-nutrient contents of watermelon Citrullus lanatus. Ann Biol Res 3(11):5145–5150 Johnson JT, Iwang EU, Hemen JT, Odey MO, Efiong EE, Eteng OE (2012) Evaluation of anti-nutrient contents of watermelon Citrullus lanatus. Ann Biol Res 3(11):5145–5150
12.
Zurück zum Zitat Bhandari SV, Panchapakesan A, Shankar N, Kumar HA (2013) Production of bioethanol from fruit rinds by saccharification and fermentation. International Journal of Scientific Research Engineering & Technology 2(6):362–365 Bhandari SV, Panchapakesan A, Shankar N, Kumar HA (2013) Production of bioethanol from fruit rinds by saccharification and fermentation. International Journal of Scientific Research Engineering & Technology 2(6):362–365
13.
Zurück zum Zitat Alex S, Saira A, Nair DS, Soni KB, Sreekantan L, Rajmohan K, Reghunath BR (2017) Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis. Indian J Biotechnol 16:663–666 Alex S, Saira A, Nair DS, Soni KB, Sreekantan L, Rajmohan K, Reghunath BR (2017) Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis. Indian J Biotechnol 16:663–666
14.
Zurück zum Zitat Kassim MA, Hussin AH, Meng TK, Kamaludin R, Zaki MSIM, Zakaria WZEW (2022) Valorisation of watermelon (Citrullus lanatus) rind waste into bioethanol: an optimization and kinetic studies. Int J Environ Sci Technol 19(4):2545–2558CrossRef Kassim MA, Hussin AH, Meng TK, Kamaludin R, Zaki MSIM, Zakaria WZEW (2022) Valorisation of watermelon (Citrullus lanatus) rind waste into bioethanol: an optimization and kinetic studies. Int J Environ Sci Technol 19(4):2545–2558CrossRef
15.
Zurück zum Zitat Sininart C, Bancha L (2013) Bioethanol from prebiotic extracted jackfruit seeds. 6th PSU-UNS International Conference on Engineering and Technology (ICET 2013), 15–17 May 2013(University of Novi Sad, Faculty of Technical Sciences) 2013: 1–5 Sininart C, Bancha L (2013) Bioethanol from prebiotic extracted jackfruit seeds. 6th PSU-UNS International Conference on Engineering and Technology (ICET 2013), 15–17 May 2013(University of Novi Sad, Faculty of Technical Sciences) 2013: 1–5
16.
Zurück zum Zitat Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Biores Technol 157:68–76CrossRef Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Biores Technol 157:68–76CrossRef
17.
Zurück zum Zitat Loow Y, Wu TY, Md Jahim J, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRef Loow Y, Wu TY, Md Jahim J, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRef
18.
Zurück zum Zitat Fernandes F, Farias A, Carneiro L, Santos R, Torres D, Silva J, Souza J, Souza E (2021) Dilute acid hydrolysis of wastes of fruits from Amazon for ethanol production. AIMS Bioengineering 8(3):221–234CrossRef Fernandes F, Farias A, Carneiro L, Santos R, Torres D, Silva J, Souza J, Souza E (2021) Dilute acid hydrolysis of wastes of fruits from Amazon for ethanol production. AIMS Bioengineering 8(3):221–234CrossRef
19.
Zurück zum Zitat Sierra-Ibarra E, Alcaraz-Cienfuegos J, Vargas-Tah A, Rosas-Aburto A, Valdivia-López Á, Hernández-Luna MG, Vivaldo-Lima E, Martinez A (2022) Ethanol production by Escherichia coli from detoxified lignocellulosic teak wood hydrolysates with high concentration of phenolic compounds. Journal of Industrial Microbiology and Biotechnology, 49(2): kuab077 Sierra-Ibarra E, Alcaraz-Cienfuegos J, Vargas-Tah A, Rosas-Aburto A, Valdivia-López Á, Hernández-Luna MG, Vivaldo-Lima E, Martinez A (2022) Ethanol production by Escherichia coli from detoxified lignocellulosic teak wood hydrolysates with high concentration of phenolic compounds. Journal of Industrial Microbiology and Biotechnology, 49(2): kuab077
20.
Zurück zum Zitat Jahanbakhshi A, Salehi R (2019) Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. J Food Process Eng 42(7):13283CrossRef Jahanbakhshi A, Salehi R (2019) Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. J Food Process Eng 42(7):13283CrossRef
21.
Zurück zum Zitat Mazaheri D, Ahi M (2021) Evaluation and optimization of bioethanol production from pomegranate peel by Zymomonas mobilis. Journal of Applied Biotechnology Reports 8(3):275–282 Mazaheri D, Ahi M (2021) Evaluation and optimization of bioethanol production from pomegranate peel by Zymomonas mobilis. Journal of Applied Biotechnology Reports 8(3):275–282
22.
Zurück zum Zitat Fakayode OA, Akpabli-Tsigbe NDK, Wahia H, Tu S, Ren M, Zhou C, Ma H (2021) Integrated bioprocess for bio-ethanol production from watermelon rind biomass: ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis, and fermentation. Renewable Energy 180:258–270CrossRef Fakayode OA, Akpabli-Tsigbe NDK, Wahia H, Tu S, Ren M, Zhou C, Ma H (2021) Integrated bioprocess for bio-ethanol production from watermelon rind biomass: ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis, and fermentation. Renewable Energy 180:258–270CrossRef
23.
Zurück zum Zitat Wagner E, Sierra-Ibarra E, Rojas NL, Martinez A (2022) One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04. Renewable Energy 189:717–725CrossRef Wagner E, Sierra-Ibarra E, Rojas NL, Martinez A (2022) One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04. Renewable Energy 189:717–725CrossRef
24.
Zurück zum Zitat Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technology Biotechnology 56(2):174–187PubMedPubMedCentralCrossRef Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technology Biotechnology 56(2):174–187PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Tsegaye B, Balomajumder C, Roy P (2019) Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers Manage 186:82–92CrossRef Tsegaye B, Balomajumder C, Roy P (2019) Optimization of microwave and NaOH pretreatments of wheat straw for enhancing biofuel yield. Energy Convers Manage 186:82–92CrossRef
26.
Zurück zum Zitat Hu L, Li R, Liu Y, Souliyathai D, Zhang W, Chen Y (2021) Energy-efficient photothermal catalysis of rubber seed oil for the preparation of biofuel compounds. Fuel 306:121683CrossRef Hu L, Li R, Liu Y, Souliyathai D, Zhang W, Chen Y (2021) Energy-efficient photothermal catalysis of rubber seed oil for the preparation of biofuel compounds. Fuel 306:121683CrossRef
27.
Zurück zum Zitat Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35(5):355–366PubMedCrossRef Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35(5):355–366PubMedCrossRef
28.
Zurück zum Zitat Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Science and Technology 59(2):1311–1318CrossRef Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Science and Technology 59(2):1311–1318CrossRef
29.
Zurück zum Zitat Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRef Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356CrossRef
30.
Zurück zum Zitat Zollner N, Kirsch K (1960) Separation of plasma lipids by column chromatography. 1. Methods and identification of fractions. Zeitschrift fur die gesamte experimentelle Medizin 134:10–28 Zollner N, Kirsch K (1960) Separation of plasma lipids by column chromatography. 1. Methods and identification of fractions. Zeitschrift fur die gesamte experimentelle Medizin 134:10–28
31.
Zurück zum Zitat Waterborg JH (2009) The Lowry method for protein quantitation. In The protein protocols handbook (pp. 7–10). Humana Press, Totowa Waterborg JH (2009) The Lowry method for protein quantitation. In The protein protocols handbook (pp. 7–10). Humana Press, Totowa
32.
Zurück zum Zitat Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef
33.
Zurück zum Zitat Paez V, Barrett WB, Deng X, Diaz-Amigo C, Fiedler K, Fuerer C, Coates SG (2016) AOAC SMPR® 2016.002. J AOAC Int 99(4): 1122–1124 Paez V, Barrett WB, Deng X, Diaz-Amigo C, Fiedler K, Fuerer C, Coates SG (2016) AOAC SMPR® 2016.002. J AOAC Int 99(4): 1122–1124
34.
Zurück zum Zitat Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose, and lignin. Biores Technol 101(21):8217–8223CrossRef Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose, and lignin. Biores Technol 101(21):8217–8223CrossRef
35.
Zurück zum Zitat Iqbal A, Schulz P, Rizvi SS (2021) Valorization of bioactive compounds in fruit pomace from agro-fruit industries: present insights and future challenges. Food Biosci 44:101384CrossRef Iqbal A, Schulz P, Rizvi SS (2021) Valorization of bioactive compounds in fruit pomace from agro-fruit industries: present insights and future challenges. Food Biosci 44:101384CrossRef
36.
Zurück zum Zitat Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y (2021) Biofuels and biorefineries: development, application and future perspectives emphasizing the environmental and economic aspects. J Environ Manage 297:113268PubMedCrossRef Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y (2021) Biofuels and biorefineries: development, application and future perspectives emphasizing the environmental and economic aspects. J Environ Manage 297:113268PubMedCrossRef
37.
Zurück zum Zitat Halsall-Whitney H, Taylor D, Thibault J (2003) Multicriteria optimization of gluconic acid production using net flow. Bioprocess Biosyst Eng 25(5):299–307PubMedCrossRef Halsall-Whitney H, Taylor D, Thibault J (2003) Multicriteria optimization of gluconic acid production using net flow. Bioprocess Biosyst Eng 25(5):299–307PubMedCrossRef
38.
Zurück zum Zitat Bennett C (1971) Spectrophotometric acid dichromate method for the determination of ethyl alcohol. Am J Med Technol 37(6):217–220PubMed Bennett C (1971) Spectrophotometric acid dichromate method for the determination of ethyl alcohol. Am J Med Technol 37(6):217–220PubMed
39.
Zurück zum Zitat Al-Sayed HM, Ahmed AR (2013) Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences 58(1):83–95CrossRef Al-Sayed HM, Ahmed AR (2013) Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences 58(1):83–95CrossRef
40.
Zurück zum Zitat Bitaraf MS, Khodaiyan F, Mohammadifar MA, Mousavi SM (2012) Application of response surface methodology to improve fermentation time and rheological properties of probiotic yogurt containing Lactobacillus reuteri. Food Bioprocess Technol 5(4):1394–1401CrossRef Bitaraf MS, Khodaiyan F, Mohammadifar MA, Mousavi SM (2012) Application of response surface methodology to improve fermentation time and rheological properties of probiotic yogurt containing Lactobacillus reuteri. Food Bioprocess Technol 5(4):1394–1401CrossRef
41.
Zurück zum Zitat Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores Technol 101(13):4851–4861CrossRef Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores Technol 101(13):4851–4861CrossRef
42.
Zurück zum Zitat Unhasirikul M, Naranong N, Narkrugsa W (2012) Reducing sugar production from durian peel by hydrochloric acid hydrolysis. World Academy of Science, Engineering and Technology 6(9):394–399 Unhasirikul M, Naranong N, Narkrugsa W (2012) Reducing sugar production from durian peel by hydrochloric acid hydrolysis. World Academy of Science, Engineering and Technology 6(9):394–399
44.
Zurück zum Zitat Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion, and synergy. Biotechnol Adv 30:1458–1480PubMedCrossRef Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion, and synergy. Biotechnol Adv 30:1458–1480PubMedCrossRef
45.
Zurück zum Zitat Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Research 6:405–415CrossRef Leu SY, Zhu JY (2013) Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Research 6:405–415CrossRef
46.
Zurück zum Zitat Shyam Kumar R, Gandhi M, Rajeshwari R, Harikrishnan H (2011) Utilization of waste ripe banana and peels for bioethanol production using Saccharomyces cerevisiae. Journal of Bioscience and Research 2:67–71 Shyam Kumar R, Gandhi M, Rajeshwari R, Harikrishnan H (2011) Utilization of waste ripe banana and peels for bioethanol production using Saccharomyces cerevisiae. Journal of Bioscience and Research 2:67–71
47.
Zurück zum Zitat Jahid M, Gupta A, Sharma DK (2018) Production of bioethanol from fruit wastes (banana, papaya, pineapple and mango peels) under milder conditions. Journal of Bioprocessing & Biotechniques 8:327CrossRef Jahid M, Gupta A, Sharma DK (2018) Production of bioethanol from fruit wastes (banana, papaya, pineapple and mango peels) under milder conditions. Journal of Bioprocessing & Biotechniques 8:327CrossRef
49.
Zurück zum Zitat Casabar JT, Unpaprom Y, Ramaraj R (2019) Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery 9:761–765CrossRef Casabar JT, Unpaprom Y, Ramaraj R (2019) Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery 9:761–765CrossRef
50.
Zurück zum Zitat Krishnan MS, Ho NW, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). twentieth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa NJ, pp 373–388CrossRef Krishnan MS, Ho NW, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). twentieth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa NJ, pp 373–388CrossRef
Metadaten
Titel
Watermelon peel hydrolysate production optimization and ethanologenesis employing yeast isolates
verfasst von
Asma Chaudhary
Ali Hussain
Qurat-ul-Ain Ahmad
Tooba Ahmad
Qandeel Minahal
Shuichi Karita
Balakrishnan Deepanraj
Publikationsdatum
18.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 7/2024
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02923-1

Weitere Artikel der Ausgabe 7/2024

Biomass Conversion and Biorefinery 7/2024 Zur Ausgabe