Skip to main content
Erschienen in: Water Resources Management 6/2015

01.04.2015

Wavelet Neural Modeling for Hydrologic Time Series Forecasting with Uncertainty Evaluation

verfasst von: Yan-Fang Sang, Zhonggen Wang, Changming Liu

Erschienen in: Water Resources Management | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An approach, with the basic idea of resampling wavelet neural parameters, was proposed for probabilistic forecasting of hydrologic time series by the wavelet neural model. Parameters in wavelet neural model are assumed as following uniform distribution, and both proper convergence criterion and likelihood function are used to train the wavelet neural structure and judge the acceptance of parameter set. By training and learning wavelet neural structure as many times (i.e., resampling neural parameters) until becoming stable, all sets of wavelet neural parameters are composed as the resampling results, based on which probabilistic forecasting of hydrologic time series is attained. Optimal forecasting result can be gained by computing mathematical mean of the resampling results, and uncertainty can be described by proper confidence interval. Results of one runoff example indicated the identical performance of the proposed approach and wavelet regression model, but both perform better than conventional neural model. The proposed approach has similar efficiency as the Bayesian method for uncertainty evaluation, and both show higher efficiency than traditional Monte-Carlo method. Choice of proper convergence criterion is an important task when using the proposed approach, because it directly determines the convergence rate, accuracy and uncertainty level of probabilistic forecasting result. Overall, several key issues should be carefully considered for obtaining more reasonable probabilistic forecasting results by the proposed approach, including choice of proper likelihood function, accurate wavelet decomposition of series, and determination of proper wavelet neural structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26:523–537CrossRef Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26:523–537CrossRef
Zurück zum Zitat Anctil F, Tape DG (2004) An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J Environ Eng Sci 3:S121–S128CrossRef Anctil F, Tape DG (2004) An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J Environ Eng Sci 3:S121–S128CrossRef
Zurück zum Zitat Arabi M, Govindaraju RS, Hantush MM (2007) A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. J Hydrol 333(2–4):459–471CrossRef Arabi M, Govindaraju RS, Hantush MM (2007) A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. J Hydrol 333(2–4):459–471CrossRef
Zurück zum Zitat Beven K, Binley A (1992) The future of distributed model: model calibration and uncertainty prediction. Hydrol Process 6:279–298CrossRef Beven K, Binley A (1992) The future of distributed model: model calibration and uncertainty prediction. Hydrol Process 6:279–298CrossRef
Zurück zum Zitat Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29CrossRef Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29CrossRef
Zurück zum Zitat Biemans H, Hutjes RWA, Kabat P, Strengers BJ, Gerten D, Rost S (2009) Effects of precipitation uncertainty on discharge calculations for main river basins. J Hydrometeorol 10(4):1011–1025CrossRef Biemans H, Hutjes RWA, Kabat P, Strengers BJ, Gerten D, Rost S (2009) Effects of precipitation uncertainty on discharge calculations for main river basins. J Hydrometeorol 10(4):1011–1025CrossRef
Zurück zum Zitat Bormann H (2008) Sensitivity of a soil-vegetation-atmosphere-transfer scheme to input data resolution and data classification. J Hydrol 351(1–2):154–169CrossRef Bormann H (2008) Sensitivity of a soil-vegetation-atmosphere-transfer scheme to input data resolution and data classification. J Hydrol 351(1–2):154–169CrossRef
Zurück zum Zitat Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day Publications, San Francisco Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day Publications, San Francisco
Zurück zum Zitat Cheng CT, Xie JX, Chau KW, Layeghifard M (2008) A new indirect multi-step-ahead forecasting model for a long-term hydrologic forecasting. J Hydrol 361:118–130CrossRef Cheng CT, Xie JX, Chau KW, Layeghifard M (2008) A new indirect multi-step-ahead forecasting model for a long-term hydrologic forecasting. J Hydrol 361:118–130CrossRef
Zurück zum Zitat Chou CM (2011) A threshold based wavelet de-noising method for hydrological data modeling. Water Resour Manag 25(7):1809–1830CrossRef Chou CM (2011) A threshold based wavelet de-noising method for hydrological data modeling. Water Resour Manag 25(7):1809–1830CrossRef
Zurück zum Zitat Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3–4):244–257CrossRef Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3–4):244–257CrossRef
Zurück zum Zitat Danbechins I (1992) Ten lectures on wavelets. SIAM, Philadelphia Danbechins I (1992) Ten lectures on wavelets. SIAM, Philadelphia
Zurück zum Zitat Geza M, Poeter EP, McCray JE (2009) Quantifying predictive uncertainty for a mountain-watershed model. J Hydrol 376(1–2):170–181CrossRef Geza M, Poeter EP, McCray JE (2009) Quantifying predictive uncertainty for a mountain-watershed model. J Hydrol 376(1–2):170–181CrossRef
Zurück zum Zitat Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput 7:585–592CrossRef Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput 7:585–592CrossRef
Zurück zum Zitat Kaheil YH, Gill MK, McKee M, Bastidas L (2006) A new Bayesian recursive technique for parameter estimation. Water Resour Res 42(8):W08423CrossRef Kaheil YH, Gill MK, McKee M, Bastidas L (2006) A new Bayesian recursive technique for parameter estimation. Water Resour Res 42(8):W08423CrossRef
Zurück zum Zitat Kiṣi O (2009a) Neural network and wavelet conjunction model for modeling monthly level fluctuations of Van Lake in Turkey. Hydrol Process 23(14):2081–2092CrossRef Kiṣi O (2009a) Neural network and wavelet conjunction model for modeling monthly level fluctuations of Van Lake in Turkey. Hydrol Process 23(14):2081–2092CrossRef
Zurück zum Zitat Kiṣi O (2009b) Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting. Hydrol Process 23:3583–3597CrossRef Kiṣi O (2009b) Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting. Hydrol Process 23:3583–3597CrossRef
Zurück zum Zitat Kiṣi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389:344–353CrossRef Kiṣi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389:344–353CrossRef
Zurück zum Zitat Krzysztofowicz R (1999) Bayesian theory of probabilistic via deterministic hydrologic model. Water Resour Res 35(9):2739–2750CrossRef Krzysztofowicz R (1999) Bayesian theory of probabilistic via deterministic hydrologic model. Water Resour Res 35(9):2739–2750CrossRef
Zurück zum Zitat Krzysztofowicz R (2001) The case for probabilistic forecasting in hydrology. J Hydrol 249:2–9CrossRef Krzysztofowicz R (2001) The case for probabilistic forecasting in hydrology. J Hydrol 249:2–9CrossRef
Zurück zum Zitat Kuczera G (1992) Uncorrelated measurement error in flood frequency inference. Water Resour Res 28(1):183–188CrossRef Kuczera G (1992) Uncorrelated measurement error in flood frequency inference. Water Resour Res 28(1):183–188CrossRef
Zurück zum Zitat Kumar DN, Maity R (2008) Bayesian dynamic modeling for nonstationary hydroclimatic time series forecasting along with uncertainty quantification. Hydrol Process 22:3488–3499CrossRef Kumar DN, Maity R (2008) Bayesian dynamic modeling for nonstationary hydroclimatic time series forecasting along with uncertainty quantification. Hydrol Process 22:3488–3499CrossRef
Zurück zum Zitat Kwon HH, Lall U, Khalil AF (2006) Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature. Water Resour Res 42:W11404CrossRef Kwon HH, Lall U, Khalil AF (2006) Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature. Water Resour Res 42:W11404CrossRef
Zurück zum Zitat Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227(1):56–65CrossRef Luk KC, Ball JE, Sharma A (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J Hydrol 227(1):56–65CrossRef
Zurück zum Zitat Maheswaran R, Khosa R (2014) A wavelet-based second order nonlinear model for forecasting monthly rainfall. Water Resour Manag 28(15):5411–5431CrossRef Maheswaran R, Khosa R (2014) A wavelet-based second order nonlinear model for forecasting monthly rainfall. Water Resour Manag 28(15):5411–5431CrossRef
Zurück zum Zitat Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124CrossRef Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124CrossRef
Zurück zum Zitat Mallat S (1989) Multiresolution approximations and wavelet orthonommal bases of L2(R). Trans Amr Math Soc 315(1):69–87 Mallat S (1989) Multiresolution approximations and wavelet orthonommal bases of L2(R). Trans Amr Math Soc 315(1):69–87
Zurück zum Zitat Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef
Zurück zum Zitat Nourani V, Mogaddam AA, Nadiri AO (2008) An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process 22:5054–5066CrossRef Nourani V, Mogaddam AA, Nadiri AO (2008) An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process 22:5054–5066CrossRef
Zurück zum Zitat Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for forecasting of Ligvanchai watershed precipitation. Eng Appl Artif Intel 22:466–472CrossRef Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for forecasting of Ligvanchai watershed precipitation. Eng Appl Artif Intel 22:466–472CrossRef
Zurück zum Zitat Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgeCrossRef Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Ramana RV, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network. Water Resour Manag 27(10):3697–3711CrossRef Ramana RV, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet neural network. Water Resour Manag 27(10):3697–3711CrossRef
Zurück zum Zitat Sang YF (2012) A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resour Manag 26(11):3345–3365CrossRef Sang YF (2012) A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resour Manag 26(11):3345–3365CrossRef
Zurück zum Zitat Sang YF (2013) A review on the applications of wavelet transform in hydrologic time series analysis. Atmosph Res 122:8–15CrossRef Sang YF (2013) A review on the applications of wavelet transform in hydrologic time series analysis. Atmosph Res 122:8–15CrossRef
Zurück zum Zitat Sang YF, Wang D, Wu JC (2010) Probabilistic forecast and uncertainty assessment of hydrologic design values using Bayesian theories. Hum Ecol Risk Assess 16(5):1184–1207CrossRef Sang YF, Wang D, Wu JC (2010) Probabilistic forecast and uncertainty assessment of hydrologic design values using Bayesian theories. Hum Ecol Risk Assess 16(5):1184–1207CrossRef
Zurück zum Zitat Sang YF, Shang LY, Wang ZG, Liu CM, Yang MG (2013) Bayesian-combined wavelet regressive modeling for hydrologic time series forecasting. Chin Sci Bull 58:3796–3805CrossRef Sang YF, Shang LY, Wang ZG, Liu CM, Yang MG (2013) Bayesian-combined wavelet regressive modeling for hydrologic time series forecasting. Chin Sci Bull 58:3796–3805CrossRef
Zurück zum Zitat Sang YF, Liu CM, Wang ZG, Wen J, Shang LY (2014) Energy-based wavelet de-Noising of hydrologic time series. PLoS ONE 9(10):e110733CrossRef Sang YF, Liu CM, Wang ZG, Wen J, Shang LY (2014) Energy-based wavelet de-Noising of hydrologic time series. PLoS ONE 9(10):e110733CrossRef
Zurück zum Zitat Shrestha DL, Solomatine DP (2006) Machine learning approaches for estimation of prediction interval for the model output. Neural Netw 19:225–235CrossRef Shrestha DL, Solomatine DP (2006) Machine learning approaches for estimation of prediction interval for the model output. Neural Netw 19:225–235CrossRef
Zurück zum Zitat Sivakumar B, Berndtsson R, Persson M (2001) Monthly runoff forecasting using phase space reconstruction. Hydrol Sci J 46(3):377–387CrossRef Sivakumar B, Berndtsson R, Persson M (2001) Monthly runoff forecasting using phase space reconstruction. Hydrol Sci J 46(3):377–387CrossRef
Zurück zum Zitat Tang Y, Reed P, van Werkhoven K, Wagener T (2007) Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resour Res 43(6):W06415CrossRef Tang Y, Reed P, van Werkhoven K, Wagener T (2007) Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resour Res 43(6):W06415CrossRef
Zurück zum Zitat Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382(1–4):20–33CrossRef Tiwari MK, Chatterjee C (2010) Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J Hydrol 382(1–4):20–33CrossRef
Zurück zum Zitat Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRef Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRef
Zurück zum Zitat Tung WH, Mays LW (1981) Risk models for flood levee design. Water Resour Res 17(4):833–841CrossRef Tung WH, Mays LW (1981) Risk models for flood levee design. Water Resour Res 17(4):833–841CrossRef
Zurück zum Zitat van Werkhoven K, Wagener T, Reed P, Tang Y (2009) Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv Water Resour 32(8):1154–1169CrossRef van Werkhoven K, Wagener T, Reed P, Tang Y (2009) Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv Water Resour 32(8):1154–1169CrossRef
Zurück zum Zitat Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Env Res Risk A 23(7):1011–1026CrossRef Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Env Res Risk A 23(7):1011–1026CrossRef
Zurück zum Zitat Wang W, Hu S, Li Y (2011) Wavelet transform method for synthetic generation of daily streamflow. Water Resour Manag 25(1):41–57CrossRef Wang W, Hu S, Li Y (2011) Wavelet transform method for synthetic generation of daily streamflow. Water Resour Manag 25(1):41–57CrossRef
Metadaten
Titel
Wavelet Neural Modeling for Hydrologic Time Series Forecasting with Uncertainty Evaluation
verfasst von
Yan-Fang Sang
Zhonggen Wang
Changming Liu
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 6/2015
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-014-0911-9

Weitere Artikel der Ausgabe 6/2015

Water Resources Management 6/2015 Zur Ausgabe