Skip to main content

2018 | OriginalPaper | Buchkapitel

29. Weak Solutions for the Compressible Navier-Stokes Equations: Existence, Stability, and Longtime Behavior

verfasst von : Antonín Novotný, Hana Petzeltová

Erschienen in: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This double-sized chapter contains two related themes that were supposed to be covered by two independent chapters of the handbook in the original project:

  1. (1)

    weak solutions of the Navier-Stokes equations in the barotropic regime and

     
  2. (2)

    weak solutions of the Navier-Stokes-Fourier system.

     
We shall discuss for both systems:
  1. (1)

    Various notions of weak solutions, their relevance, and their mutual relations.

     
  2. (2)

    Global existence of weak solutions.

     
  3. (3)

    Notions of relative energy functional, dissipative solutions and relative energy inequality and its impact on the investigation of the stability analysis of compressible flows.

     
  4. (4)

    Weak strong uniqueness principle.

     
  5. (5)

    Longtime behavior of weak solutions.

     

For physical reasons, we shall limit ourselves to the three-dimensional physical space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
  1. H. Beir\(\tilde{a}\) o da Veiga, An L p -theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible, fluids, the equilibrium solutions. Commun. Math. Phys. 109, 229–248 (1987)
  2. E. Becker, Gasdynamic, Leitfaden der Angewandten Mathematik und Mechanik, Band 6 (Teubner Verlag, Stuttgart, 1996)
  3. P. Bella, E. Feireisl, A. Novotny, Dimension reduction for compressible viscous fluids. Acta Appl. Math. 134, 111–121 (2014)MathSciNetView Article
  4. P. Bella, E. Feiresl, D. Pražák, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)MathSciNetView Article
  5. P. Bella, E. Feireisl, M. Lewicka, A. Novotny, A rigorous justification of the Euler and Navier-Stokes equations with geometric effects. SIAM J. Math. Anal. 48(6), 3907–3930 (2016)MathSciNetView Article
  6. F. Boyer, P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183 (Springer, New-York, 2013)View Article
  7. D. Bresch, B. Desjardins, Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressibles avec température. C.R. Acad. Sci. Paris 343, 219–224 (2006)MathSciNetView Article
  8. D. Bresch, B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)MathSciNetView Article
  9. D. Bresch, P.E. Jabin, Global weak solutions of PDEs for compressible media: a compactness criterion to cover new physical situations. Preprint. https://​arxiv.​org/​pdf/​1602.​04373.​pdf
  10. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, Amsterdam, 1973)MATH
  11. J.K. Brooks, R.V. Chacon, Continuity and compactness of measures. Adv. Math. 37, 16–26 (1980)MathSciNetView Article
  12. T. Chang, B.J. Jin, A. Novotny, Compressible Navier-Stokes system with general inflow-outflow boundary data. Preprint. 2017
  13. K.C. Chao, R.L. Robinson Jr. (eds.), Equations of State in Engineering and Research. Advances in Chemistry Series, vol. 182 (American Chemical Society, Washington DC, 1979). Based on a Symposium held at the 176th Meeting of the American Chemical Society, Miami Beach, 11–14 Sept 1978
  14. Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)MathSciNetView Article
  15. R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)MathSciNetView Article
  16. C.M. Dafermos, The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)MathSciNetView Article
  17. B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Commun. Partial Differ. Equ. 22, 977–1008 (1997)MathSciNetView Article
  18. R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)MathSciNetView Article
  19. B. Ducomet, Simplified models of quantum fluids of nuclear physics. Math. Bohem. 126, 323–336 (2001)MathSciNetMATH
  20. B. Ducomet, E. Feireisl, A regularizing effect of radiation in the equations of fluid dynamics. Math. Methods Appl. Sci. 28(6), 661–685 (2005)MathSciNetView Article
  21. B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars. Commun. Math. Phys. 266, 595–629 (2006)MathSciNetView Article
  22. I. Ekeland, R. Temam, Convex Analysis and Variational Problems (North Holland, Amsterdam, 1976)MATH
  23. S. Eliezer, A. Ghatak, H. Hora, An Introduction to Equations of States, Theory and Applications (Cambridge University Press, Cambridge, 1986)MATH
  24. R. Erban, On the static-limit solutions to the Navier-Stokes equations of compressible flow. J. Math. Fluid Mech. 3(4), 393–408 (2001)MathSciNetView Article
  25. L. Escauriaza, G. Seregin, V. Sverak, L3,-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58(2), 211–250 (2003)View Article
  26. C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2006), pp. 57–67MATH
  27. E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not squared integrable. Comment. Math. Univ. Carolinae 42, 83–98 (2001)MathSciNetMATH
  28. E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law. J. Differ. Equ. 184, 97–108 (2002)MathSciNetView Article
  29. E. Feireisl, Propagation of oscillations, complete trajectories and attractors for compressible flows. Nonlinear Differ. Equ. Appl. 10, 33–55 (2003)MathSciNetView Article
  30. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)MATH
  31. E. Feireisl, Relative entropies in thermodynamics of complete fluid systems. DCDS B 32(9), 3059–3080 (2012)MathSciNetView Article
  32. E. Feireisl, A. Novotny, Weak sequential stability of the set of admissible variational solutions to the Navier-Stokes-Fourier system. SIMA J. Math. Anal. 27(2), 619–650 (2005)MathSciNetView Article
  33. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser-Verlag, Basel, 2009)View Article
  34. E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204(2), 683–706 (2012)MathSciNetView Article
  35. E. Feireisl, A. Novotny, Inviscid incompressible limits of the Full Navier–Stokes–Fourier system. Commun. Math. Phys. 321(3), 605–628 (2013)MathSciNetView Article
  36. E. Feireisl, A. Novotny, Multiple scales and singular limits for compressible rotating fluids with general initial data. Commun. Partial Differ. Equ. 39, 1104–1127 (2014)MathSciNetView Article
  37. E. Feireisl, A. Novotny, Scale interactions in compressible rotating fluids. Annali di Matematica Pura ed Applicata 193(6), 111–121 (2014)MathSciNetView Article
  38. E. Feireisl, A. Novotny, Inviscid incompressible limits under mild stratification: rigorous derivation of the Euler-Boussinesq system. Appl. Math. Optim. 70(2), 279–307 (2014)MathSciNetView Article
  39. E. Feireisl, H. Petzeltová, On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow. Manuscr. Math. 97, 109–116 (1998)MathSciNetView Article
  40. E. Feireisl, H. Petzeltová, Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow. Arch. Ration. Mech. Anal. 150, 77–96 (1999)MathSciNetView Article
  41. E. Feireisl, H. Petzeltová, On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differ. Equ. 25(3–4), 755–767 (2000)MathSciNetView Article
  42. E. Feireisl, H. Petzeltová, The zero-velocity-limit solutions to the Navier-Stokes equations of compressible fluid revisited. Ann. Univ. Ferrara XLVI, 209–218 (2000)
  43. E. Feireisl, H. Petzeltová, Bounded absorbing sets for the Navier-Stokes equations of compressible fluid. Commun. Partial Differ. Equ. 26, 1133–1144 (2001)MathSciNetView Article
  44. E. Feireisl, D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics (AIMS, Springfield, 2010)MATH
  45. E. Feireisl, Y. Sun, Conditional regularity of very weak solutions to the Navier-Stokes-Fourier system, in Recent Advances in Partial Differential Equations and Applications. Contemporary Mathematical, vol. 666 (American Mathematical Society, Providence, 2016), pp. 179–199
  46. E. Feireisl, Š. Matuš˚u Nečasová, H. Petzeltová, I. Straškraba, On the motion of a viscous compressible fluid driven by a time-periodic external force. Arch Ration. Mech. Anal. 149, 69–96 (1999)
  47. E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Dyn. 3, 358–392 (2001)View Article
  48. E. Feireisl, A. Novotný, H. Petzeltová, On the domain dependence of the weak solutions to the compressible Navier-Stokes equations of a barotropic fluid. Math. Methods Appl. Sci. 25:1045–1073 (2002)MathSciNetView Article
  49. E. Feireisl, A. Novotný, Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–632 (2011)MathSciNetView Article
  50. E. Feireisl, B.J. Jin, A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14(4), 717–730 (2012)MathSciNetView Article
  51. E. Feireisl, P. Mucha, A. Novotny, M. Pokorný, Time-Periodic Solutions to the Full Navier-Stokes-Fourier System. Arch. Ration. Mech. Anal. 204(3), 745–786 (2012)MathSciNetView Article
  52. E. Feireisl, B. Jin, A. Novotny, Inviscid incompressible limits of strongly stratified fluids. Asymptot. Anal. 89(3–4), 307–329 (2014)MathSciNetMATH
  53. E. Feireisl, A. Novotný, Y. Sun, A regularity criterion for the weak solutions to the compressible Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 212(1), 219–239 (2014)MathSciNetView Article
  54. E. Feireisl, R. Hošek, D. Maltese, A. Novotný, Error estimates for a numerical method for the compressible Navier-Stokes system on sufficiently smooth domains (2015). arXiv preprint arXiv:1508.06432
  55. E. Feireisl, T. Karper, A. Novotny, A convergent mixed numerical method for the Navier-Stokes-Fourier system. IMA J. Numer. Anal. 36, 1477–1535 (2016)MathSciNetView Article
  56. E. Feireisl, T. Karper, M. Pokorny, Mathematical Theory of Compressible Viscous Fluids – Analysis and Numerics (Birkhauser, Basel, 2016)View Article
  57. E. Feireisl, M. Lukáčová-Medvidóvá, S. Nečasová, A. Novotný, B. She, Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime. Inst. Math. Cz. Acad. Sci. (2016). Preprint. http://​www.​math.​cas.​cz/​recherche/​preprints/​preprints.​php?​mode_​affichage=​3&​id_​membre=​4018&​unique=​1&​lang=​0
  58. E. Feireisl, A. Novotny, Y. Sun, On the motion of viscous, compressible and heat-conducting liquids. J. Math. Phys. 57(08) (2016). https://​doi.​org/​10.​1063/​1.​4959772MathSciNetView Article
  59. G.P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations, vol. I (Springer, Berlin, 1994)MATH
  60. T. Gallouet, R. Herbin, D. Maltese, A. Novotny, Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations. IMA J. Numer. Anal. 36, 543–592 (2016)MathSciNetView Article
  61. P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)MathSciNetView Article
  62. V. Girinon, Navier-Stokes equations with non homogenous boundary conditions in a bounded three dimensional domain. J. Math. Fluid. Mech. 13, 309–339 (2011)MathSciNetView Article
  63. E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. (9), 76(6), 477–498 (1997)MathSciNetView Article
  64. D. Hoff, Global well-posedness of the Cauchy problem for nonisentropic gas dynamics with discontinuous initial data. J. Differ. Equ. 95, 33–37 (1992)View Article
  65. D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)MathSciNetView Article
  66. D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Ration. Mech. Anal. 132, 1–14 (1995)MathSciNetView Article
  67. D. Hoff, Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech. 7(3), 315–338 (2005)MathSciNetView Article
  68. D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow. SIAM J. Math. Anal. 37(6), 1742–1760 (electronic) (2006)MathSciNetView Article
  69. D. Hoff, D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)MathSciNetView Article
  70. D. Jessle, B.J. Jin, A. Novotny, Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness. SIAM J. Math. Anal. 45, 1907–1951 (2013)MathSciNetView Article
  71. T.K. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math. 125(3), 441–510 (2013)MathSciNetView Article
  72. A. Kazhikov, A. Veigant, On the existence of global solution to a two-dimensional Navier-Stokes equations for a compressible viscous flow. Sib. Math. J. 36, 1108–1141 (1995)View Article
  73. P. Kukucka, On the existence of finite energy weak solutions to the Navier-Stokes equations in irregular domains. Math. Methods Appl. Sci. 32, 1428–1451 (2009)MathSciNetView Article
  74. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetView Article
  75. J. Li, Z. Xin, Global Existence of Weak Solutions to the Barotropic Compressible Navier-Stokes Flows with Degenerate Viscosities. Preprint. http://​arxiv.​org/​pdf/​1504.​06826.​pdf
  76. P.-L. Lions, Mathematical Topics in Fluid Dynamics: Incompressible Models, vol. 1 (Oxford Science Publication, Oxford, 1996)MATH
  77. P.-L. Lions, Mathematical Topics in Fluid Dynamics: Compressible Models, vol. 2 (Oxford Science Publication, Oxford, 1998)MATH
  78. J. Málek, J. Nečas, A finite-dimensional attractor for the three dimensional flow of incompressible fluid. J. Differ. Equ. 127, 498–518 (1996)MathSciNetView Article
  79. D. Maltese, A. Novotny, Compressible Navier-Stokes equations on thin domains. J. Math. Fluid Mech. 16, 571–594 (2014)MathSciNetView Article
  80. N. Masmoudi, Incompressible inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré, Anal. non linéaire 18, 199–224 (2001)
  81. A. Matsumura, M. Padula, Stability of stationary flow of compressible fluids subject to large external potential forces. SAACM 2, 183–202 (1992)
  82. Š. Matuš˚u-Nečasová, M. Okada, T. Makino, Free boundary problem for the equation of spherically symmetric motion of viscous gas (III). Jpn. J.Ind. Appl. Math. 14(2), 199–213 (1997)
  83. A. Mellet, A. Vasseur, On the barotropic Navier-Stokes equations. Commun. Partial Differ. Equ. 32, 431–452 (2007)MathSciNetView Article
  84. F. Murat, Compacité par compensation Ann. Sc. Norm. Super. Pisa Cl. Sci. Ser. 5 IV, 489–507 (1978)
  85. S. Novo, Compressible Navier-Stokes model with inflow-outflow boundary conditions. J. Math. Fliud. Mech. 7, 485–514 (2005)MathSciNetView Article
  86. A. Novotny, M. Padula, L p approach to steady flows of viscous comprtessible fluids in exterior domains. Arch. Ration. Mech. Anal. 126, 243–297 (1994)View Article
  87. A. Novotný, I. Straškraba, Convergence to equilibria for compressible Navier-Stokes equations with large data. Ann. Mat. Pura ed Appl. CLXXIX(IV), 263–287 (2001)
  88. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004)MATH
  89. B.G. Pachpatte, Inequalities for Differential and Integral Equations (Academic Press, San Diego, 1998)MATH
  90. M. Padula, Stability properties of regular flows of heat-conducting compressible fluids. J. Math. Kyoto Univ. 32(2), 401–442 (1992)MathSciNetView Article
  91. P. Pedregal, Parametrized Measures and Variational Principles (Birkhauser, Basel, 1997)View Article
  92. P.I. Plotnikov, W. Weigant, Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal. 47(1), 626–653 (2015)MathSciNetView Article
  93. P.I. Plotnikov, J. Sokolowski, Compressible Navier-Stokes Equations. Theory and Shape Optimization. Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series), vol. 73 (Birkhäuser/Springer Basel AG, Basel, 2012)View Article
  94. L. Poul, Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains, in Proceedings of the 6th AIMS International Conference. Discrete and Continuous Dynamical Systems, 2007, pp. 834–843
  95. G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)MathSciNetView Article
  96. L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method. Annal. I.H.Poincaré- AN 26, 705–744 (2009)MathSciNetView Article
  97. D. Serre, Variation de grande amplitude pour la densité d’un fluid viscueux compressible. Phys. D 48, 113–128 (1991)MathSciNetView Article
  98. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)MathSciNetView Article
  99. K.M. Shyue, A fluid mixture type algorithm for compressbile multicomponent flow with Mie-Gruneisen equation of state. J. Comput. Phys. 171(2), 678–707 (2001)MathSciNetView Article
  100. F. Sueur, On the inviscid limit for the compressible Navier-Stokes system in an impermeable bounded domain. J. Math. Fluid Mech. 16, 163–178 (2014)MathSciNetView Article
  101. Y. Sun, C. Wang, Z. Zhang, A Beale – Kato – Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. Journal de Mathématiques Pures et Appliquées 95, 36–47 (2011)MathSciNetView Article
  102. R. Temam, Navier-Stokes Equations (North-Holland, Amsterdam, 1977)MATH
  103. S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26(2), 323–331 (1986)MathSciNetView Article
  104. A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130(IV), 197–213 (1982)MathSciNetView Article
  105. A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent. Math. 206, 935–974 (2016)MathSciNetView Article
  106. J.G. Van Wyllen, R.E. Sonntag, Fundamentals of Classical Thermodynamics (John Wiley, New-York, 1985)
  107. S. Wang, S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 31(4–6), 571–591 (2006)MathSciNetView Article
  108. Y.B. Zeldowich, Y.P. Raizer, Physics of Schock Waves and High Temperature Hydrodynamics (Academic Press, New York, 1966)
Metadaten
Titel
Weak Solutions for the Compressible Navier-Stokes Equations: Existence, Stability, and Longtime Behavior
verfasst von
Antonín Novotný
Hana Petzeltová
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-13344-7_76