Skip to main content
Erschienen in: Neural Processing Letters 3/2022

06.01.2022

Weakly Supervised Segmentation Loss Based on Graph Cuts and Superpixel Algorithm

verfasst von: Mingchun Li, Dali Chen, Shixin Liu

Erschienen in: Neural Processing Letters | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, weakly supervised learning is a hot topic in the field of machine learning, especially for image segmentation. Assuming that only a small number of pixel categories are known in advance, it is worth thinking about how to achieve appropriate deep network. In this work, a series of weakly supervised segmentation losses based on graph cuts are proposed to solve this problem. Specifically, we take the objective function of the classical graph cut algorithm as the loss function of deep learning and integrate it into the back gradient propagation to update the parameters of network. Follow this route, typical region-based losses, such as IoU loss and Dice loss, could also be extended to weakly supervised versions in this work. Besides, considering the computational complexity of the pixel level graph cut algorithm, we use SLIC algorithm to extract superpixels as the vertices of the graph involved in our loss function. In the experiments, the network based on the proposed graph cut loss achieves good performance in VOC2012 dataset, which proves the effectiveness of our method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou ZH (2018) A brief introduction to weakly supervised learning. Nat Sci Rev 5(1):44–53CrossRef Zhou ZH (2018) A brief introduction to weakly supervised learning. Nat Sci Rev 5(1):44–53CrossRef
2.
Zurück zum Zitat Li YF, Guo LZ, Zhou ZH (2021) Towards safe weakly supervised learning. IEEE Trans Pattern Anal Mach Intell 43(1):334–346 Li YF, Guo LZ, Zhou ZH (2021) Towards safe weakly supervised learning. IEEE Trans Pattern Anal Mach Intell 43(1):334–346
3.
Zurück zum Zitat Zhu H, Li L, Jiang H et al (2020) Inferring personality traits from attentive regions of user liked images via weakly supervised dual convolutional network. Neural Process Lett 51(3):2105–2121CrossRef Zhu H, Li L, Jiang H et al (2020) Inferring personality traits from attentive regions of user liked images via weakly supervised dual convolutional network. Neural Process Lett 51(3):2105–2121CrossRef
4.
Zurück zum Zitat Zhang M, Zhou Y, Zhao J et al (2020) A survey of semi-and weakly supervised semantic segmentation of images. Artif Intell Rev 53(6):4259–4288CrossRef Zhang M, Zhou Y, Zhao J et al (2020) A survey of semi-and weakly supervised semantic segmentation of images. Artif Intell Rev 53(6):4259–4288CrossRef
5.
Zurück zum Zitat Xu W, Wu J, Ding S et al (2019) Enhancing face recognition from massive weakly labeled data of new domains. Neural Process Lett 49(3):939–950CrossRef Xu W, Wu J, Ding S et al (2019) Enhancing face recognition from massive weakly labeled data of new domains. Neural Process Lett 49(3):939–950CrossRef
6.
Zurück zum Zitat Bearman A, Russakovsky O, Ferrari V, et al (2016) What’s the point: semantic segmentation with point supervision. In: European conference on computer vision, pp 549-565 Bearman A, Russakovsky O, Ferrari V, et al (2016) What’s the point: semantic segmentation with point supervision. In: European conference on computer vision, pp 549-565
7.
Zurück zum Zitat Lin D, Dai J, Jia J, et al (2016) Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings IEEE conference on computer vision pattern recognition, pp 3159–3167 Lin D, Dai J, Jia J, et al (2016) Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings IEEE conference on computer vision pattern recognition, pp 3159–3167
8.
Zurück zum Zitat Dai J, He K, Sun J (2015) Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings international conference on computer vision, pp 1635–1643 Dai J, He K, Sun J (2015) Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings international conference on computer vision, pp 1635–1643
9.
Zurück zum Zitat Papandreou G, Chen L C, Murphy K P, et al (2015) Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings international conference on computer vision, pp 1742–1750 Papandreou G, Chen L C, Murphy K P, et al (2015) Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings international conference on computer vision, pp 1742–1750
10.
Zurück zum Zitat Kolesnikov A, Lampert C H (2016) Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In: Proceedings European conference on computer vision, pp 695–711 Kolesnikov A, Lampert C H (2016) Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In: Proceedings European conference on computer vision, pp 695–711
11.
Zurück zum Zitat Pathak D, Krahenbuhl P, Darrell T (2015) Constrained convolutional neural networks for weakly supervised segmentation. In: Proceedings international conference on computer vision, pp 1796–1804 Pathak D, Krahenbuhl P, Darrell T (2015) Constrained convolutional neural networks for weakly supervised segmentation. In: Proceedings international conference on computer vision, pp 1796–1804
12.
Zurück zum Zitat Cholakkal H, Sun G, Khan F S, et al (2019) Object counting and instance segmentation with image-level supervision. In: Proceedings IEEE conference on computer vision pattern recognition, pp 12397–12405 Cholakkal H, Sun G, Khan F S, et al (2019) Object counting and instance segmentation with image-level supervision. In: Proceedings IEEE conference on computer vision pattern recognition, pp 12397–12405
13.
Zurück zum Zitat Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783CrossRef Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783CrossRef
14.
Zurück zum Zitat Boykov Y Y, Jolly M P (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: Proceedings international conference on computer vision, pp 105–112 Boykov Y Y, Jolly M P (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: Proceedings international conference on computer vision, pp 105–112
15.
Zurück zum Zitat Levin A, Lischinski D, Weiss Y (2007) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242CrossRef Levin A, Lischinski D, Weiss Y (2007) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242CrossRef
16.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
17.
Zurück zum Zitat He T, Zhang Z, Zhang H, et al (2019) Bag of tricks for image classification with convolutional neural networks. In: Proceedings IEEE conference on computer vision pattern recognition, pp 558–567 He T, Zhang Z, Zhang H, et al (2019) Bag of tricks for image classification with convolutional neural networks. In: Proceedings IEEE conference on computer vision pattern recognition, pp 558–567
18.
Zurück zum Zitat Chen L C, Papandreou G, Kokkinos I, et al (2014) Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062 Chen L C, Papandreou G, Kokkinos I, et al (2014) Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:​1412.​7062
19.
Zurück zum Zitat He K, Gkioxari G, Dollár P, et al (2017) Mask r-cnn. In: Proceeding international conference on computer vision, pp 2961–2969 He K, Gkioxari G, Dollár P, et al (2017) Mask r-cnn. In: Proceeding international conference on computer vision, pp 2961–2969
20.
Zurück zum Zitat Li M, Chen D, Liu S et al (2020) Grain boundary detection and second phase segmentation based on multi-task learning and generative adversarial network. Measurement 162:107857CrossRef Li M, Chen D, Liu S et al (2020) Grain boundary detection and second phase segmentation based on multi-task learning and generative adversarial network. Measurement 162:107857CrossRef
21.
Zurück zum Zitat Rao T, Li X, Xu M (2020) Learning multi-level deep representations for image emotion classification. Neural Process Lett 51(3):2043–2061CrossRef Rao T, Li X, Xu M (2020) Learning multi-level deep representations for image emotion classification. Neural Process Lett 51(3):2043–2061CrossRef
22.
Zurück zum Zitat Ye M, Shen J, Lin G, et al (2021) Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell Ye M, Shen J, Lin G, et al (2021) Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell
23.
Zurück zum Zitat Donahue J, Simonyan K (2019) Large scale adversarial representation learning. Adv Neural Inf Process Syst 32:10542–10552 Donahue J, Simonyan K (2019) Large scale adversarial representation learning. Adv Neural Inf Process Syst 32:10542–10552
24.
Zurück zum Zitat Devlin J, Chang M W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 Devlin J, Chang M W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805
25.
Zurück zum Zitat Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for autonomous driving. J Field Robot 37(3):362–386CrossRef Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for autonomous driving. J Field Robot 37(3):362–386CrossRef
26.
Zurück zum Zitat Touvron H, Vedaldi A, Douze M, Jégou H (2020) Fixing the train-test resolution discrepancy: Fixefficientnet. arXiv preprint arXiv:2003.08237 Touvron H, Vedaldi A, Douze M, Jégou H (2020) Fixing the train-test resolution discrepancy: Fixefficientnet. arXiv preprint arXiv:​2003.​08237
27.
Zurück zum Zitat Russakovsky O, Deng J, Su H et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef Russakovsky O, Deng J, Su H et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef
28.
29.
Zurück zum Zitat Williams A, Nangia N, Bowman S R (2017) A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:1704.05426 Williams A, Nangia N, Bowman S R (2017) A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:​1704.​05426
30.
Zurück zum Zitat Silver D, Schrittwieser J, Simonyan K et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354–359CrossRef Silver D, Schrittwieser J, Simonyan K et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354–359CrossRef
31.
Zurück zum Zitat Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: International conference on machine learning, pp 1597–1607 Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. In: International conference on machine learning, pp 1597–1607
32.
Zurück zum Zitat Dosovitskiy A, Beyer L, Kolesnikov A, et al (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 Dosovitskiy A, Beyer L, Kolesnikov A, et al (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:​2010.​11929
33.
Zurück zum Zitat Xu J, Zhou C, Cui Z, et al (2021) Scribble-Supervised Semantic Segmentation Inference. In: Proceedings international conference on computer vision, pp 15354–15363 Xu J, Zhou C, Cui Z, et al (2021) Scribble-Supervised Semantic Segmentation Inference. In: Proceedings international conference on computer vision, pp 15354–15363
34.
Zurück zum Zitat Wang B, Qi G, Tang S, et al (2019) Boundary perception guidance: a scribble-supervised semantic segmentation approach. In: IJCAI International joint conference on artificial intelligence, pp 3663–3669 Wang B, Qi G, Tang S, et al (2019) Boundary perception guidance: a scribble-supervised semantic segmentation approach. In: IJCAI International joint conference on artificial intelligence, pp 3663–3669
35.
Zurück zum Zitat Tang M, Djelouah A, Perazzi F, et al (2018) Normalized cut loss for weakly-supervised cnn segmentation. In: Proceedings IEEE conference on computer vision pattern recognition, pp 1818–1827 Tang M, Djelouah A, Perazzi F, et al (2018) Normalized cut loss for weakly-supervised cnn segmentation. In: Proceedings IEEE conference on computer vision pattern recognition, pp 1818–1827
36.
Zurück zum Zitat Meng F, Li H, Wu Q et al (2017) Weakly supervised part proposal segmentation from multiple images. IEEE Trans Image Process 26(8):4019–4031MathSciNetCrossRef Meng F, Li H, Wu Q et al (2017) Weakly supervised part proposal segmentation from multiple images. IEEE Trans Image Process 26(8):4019–4031MathSciNetCrossRef
37.
Zurück zum Zitat Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef
38.
Zurück zum Zitat Tang M, Perazzi F, Djelouah A, et al (2018) On regularized losses for weakly-supervised cnn segmentation. In: Proceedings European conference on computer vision, pp 507–522 Tang M, Perazzi F, Djelouah A, et al (2018) On regularized losses for weakly-supervised cnn segmentation. In: Proceedings European conference on computer vision, pp 507–522
39.
Zurück zum Zitat Huang Z, Wang X, Wang J, et al (2018) Weakly-supervised semantic segmentation network with deep seeded region growing. In: Proceedings IEEE conference on computer vision pattern recognition, pp 7014–7023 Huang Z, Wang X, Wang J, et al (2018) Weakly-supervised semantic segmentation network with deep seeded region growing. In: Proceedings IEEE conference on computer vision pattern recognition, pp 7014–7023
40.
Zurück zum Zitat Lu W, Gong D, Fu K et al (2021) Boundarymix: Generating pseudo-training images for improving segmentation with scribble annotations. Pattern Recog 117:107924CrossRef Lu W, Gong D, Fu K et al (2021) Boundarymix: Generating pseudo-training images for improving segmentation with scribble annotations. Pattern Recog 117:107924CrossRef
41.
Zurück zum Zitat He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings IEEE conference on computer vision pattern recognition, pp 770–778 He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings IEEE conference on computer vision pattern recognition, pp 770–778
42.
Zurück zum Zitat Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings international conference on computer vision, pp 1395–1403 Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings international conference on computer vision, pp 1395–1403
43.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
44.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings international conference learn represent, pp 1–14 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings international conference learn represent, pp 1–14
45.
Zurück zum Zitat Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032MathSciNetCrossRef Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032MathSciNetCrossRef
46.
Zurück zum Zitat Yu J, Tao D, Wang M, Rui Y (2015) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans cybern 45(4):767–779CrossRef Yu J, Tao D, Wang M, Rui Y (2015) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans cybern 45(4):767–779CrossRef
47.
Zurück zum Zitat Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef
48.
Zurück zum Zitat Li M, Chen D, Liu S et al (2021) Prior mask R-CNN based on graph cuts loss and size input for precipitation measurement. IEEE Trans Instrum Meas 70:1–15 Li M, Chen D, Liu S et al (2021) Prior mask R-CNN based on graph cuts loss and size input for precipitation measurement. IEEE Trans Instrum Meas 70:1–15
49.
Zurück zum Zitat Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651CrossRef Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651CrossRef
50.
Zurück zum Zitat Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef
51.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Proceedings international conference on medical image computing and computer-assisted intervention, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Proceedings international conference on medical image computing and computer-assisted intervention, pp 234–241
52.
Zurück zum Zitat Milletari F, Navab N, Ahmadi S A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings IC3DV, pp 565–571 Milletari F, Navab N, Ahmadi S A (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings IC3DV, pp 565–571
53.
Zurück zum Zitat Taghanaki SA, Abhishek K, Cohen JP et al (2021) Deep semantic segmentation of natural and medical images: a review. Artif Intell Rev 54(1):137–178CrossRef Taghanaki SA, Abhishek K, Cohen JP et al (2021) Deep semantic segmentation of natural and medical images: a review. Artif Intell Rev 54(1):137–178CrossRef
54.
Zurück zum Zitat Rahman M A, Wang Y (2016) Optimizing intersection-over-union in deep neural networks for image segmentation. In: Proceedings international symposium on visual computing, pp 234–244 Rahman M A, Wang Y (2016) Optimizing intersection-over-union in deep neural networks for image segmentation. In: Proceedings international symposium on visual computing, pp 234–244
55.
Zurück zum Zitat Salehi S S M, Erdogmus D, Gholipour A (2017) Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Proceedings international workshop on machine learning in medical imaging, pp 379–387 Salehi S S M, Erdogmus D, Gholipour A (2017) Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: Proceedings international workshop on machine learning in medical imaging, pp 379–387
56.
Zurück zum Zitat Mittal S, Tatarchenko M, Brox T (2021) Semi-supervised semantic segmentation with high-and low-level consistency. IEEE Trans Pattern Anal Mach Intell 43(4):1369–1379CrossRef Mittal S, Tatarchenko M, Brox T (2021) Semi-supervised semantic segmentation with high-and low-level consistency. IEEE Trans Pattern Anal Mach Intell 43(4):1369–1379CrossRef
57.
Zurück zum Zitat Achanta R, Shaji A, Smith K et al (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRef Achanta R, Shaji A, Smith K et al (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRef
58.
Zurück zum Zitat Krähenbühl P, Koltun V (2011) Efficient inference in fully connected crfs with gaussian edge potentials. Adv Neural Inf Process Syst 24:109–117 Krähenbühl P, Koltun V (2011) Efficient inference in fully connected crfs with gaussian edge potentials. Adv Neural Inf Process Syst 24:109–117
59.
Zurück zum Zitat Verbeek J, Triggs W (2007) Scene segmentation with crfs learned from partially labeled images. Adv Neural Inf Process Syst 20:1553–1560 Verbeek J, Triggs W (2007) Scene segmentation with crfs learned from partially labeled images. Adv Neural Inf Process Syst 20:1553–1560
60.
Zurück zum Zitat Everingham M, Eslami SMA, Van Gool L et al (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136CrossRef Everingham M, Eslami SMA, Van Gool L et al (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136CrossRef
61.
Zurück zum Zitat Chen L C, Zhu Y, Papandreou G, et al (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings European conference on computer vision, pp 801–818 Chen L C, Zhu Y, Papandreou G, et al (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings European conference on computer vision, pp 801–818
62.
Zurück zum Zitat Chen L C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 Chen L C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:​1706.​05587
63.
Zurück zum Zitat Howard A G, Zhu M, Chen B, et al (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 Howard A G, Zhu M, Chen B, et al (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:​1704.​04861
64.
Zurück zum Zitat Rother C, Kolmogorov V, Blake A (2004) “GrabCut” interactive foreground extraction using iterated graph cuts. ACM SIGGRAPH 23(3):309–314 Rother C, Kolmogorov V, Blake A (2004) “GrabCut” interactive foreground extraction using iterated graph cuts. ACM SIGGRAPH 23(3):309–314
65.
Zurück zum Zitat Tang M, Marin D, Ayed I B, et al (2016) Normalized cut meets MRF. In: Proceedings European conference on computer vision, pp 748–765 Tang M, Marin D, Ayed I B, et al (2016) Normalized cut meets MRF. In: Proceedings European conference on computer vision, pp 748–765
66.
Zurück zum Zitat Liu Y, Cheng MM, Hu X et al (2019) Richer convolutional features for edge detection. IEEE Trans Pattern Anal Mach Intell 41(08):1939–1946CrossRef Liu Y, Cheng MM, Hu X et al (2019) Richer convolutional features for edge detection. IEEE Trans Pattern Anal Mach Intell 41(08):1939–1946CrossRef
Metadaten
Titel
Weakly Supervised Segmentation Loss Based on Graph Cuts and Superpixel Algorithm
verfasst von
Mingchun Li
Dali Chen
Shixin Liu
Publikationsdatum
06.01.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10733-1

Weitere Artikel der Ausgabe 3/2022

Neural Processing Letters 3/2022 Zur Ausgabe

Neuer Inhalt