Skip to main content
Erschienen in: Neural Processing Letters 3/2022

10.04.2022

An Image Diagnosis Algorithm for Keratitis Based on Deep Learning

verfasst von: Qingbo Ji, Yue Jiang, Lijun Qu, Qian Yang, Han Zhang

Erschienen in: Neural Processing Letters | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Clinical diagnosis of keratitis highly depends on the observation of medical images. Since there are many classifications of keratitis, and the pathogenic factors are different, ophthalmologists will be more demanding. In this paper, a multi-task recognition method is proposed for the automatic diagnosis of keratitis. The diagnosis basis of keratitis is obtained, and the image of the anterior segment is interpreted. Under the guidance of ophthalmologists, all anterior segment images are labeled from five signs, consisting of opacity area in the cornea (turbid and clear), boundary of the focus (distinct and vague), epithelium of the focus area (intact and incomplete), hyperemia (congestive and healthy), and neovascularization (yes and no), which are important in the diagnosis of keratitis. A multi-label image dataset is constructed, and the images are enhanced by horizontal flipping according to the image characteristics. In this paper, an improved multi-attribute network based on ResNet50 is proposed, including a feature extraction module and a classification module. The feature extraction module is to extract image features, and the classification module is a multi-output network in which each channel corresponds to each attribute. In order to improve the overall recognition accuracy of multi-task, the loss function is optimized. In the loss function, the loss weights of different tasks are determined based on the classification difficulty. A joint training approach is used to train the multi-attribute network which can simultaneously recognize the five attributes and obtain the specific symptoms of keratitis. The experimental results show that the average accuracy of these five attributes can be achieved 84.89% in the multi-attribute network, among which the highest accuracy can be achieved 89.51%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Painter R (2015) Slit lamp photography: the basics. J Audiov Media Med 38(1–2):119–123 Painter R (2015) Slit lamp photography: the basics. J Audiov Media Med 38(1–2):119–123
2.
Zurück zum Zitat Armstrong SM, Cohen KL (2017) Anterior segment OCT: posterior segment imaging, anterior eye photography, and slit lamp biomicrography. Ophthalmic Imaging Armstrong SM, Cohen KL (2017) Anterior segment OCT: posterior segment imaging, anterior eye photography, and slit lamp biomicrography. Ophthalmic Imaging
3.
Zurück zum Zitat Meng K, Zhou CC (2012) Multi-disciplinary intersection and integration: the development tendency and the change in meteorology in colleges. Value Eng 36:219–220 Meng K, Zhou CC (2012) Multi-disciplinary intersection and integration: the development tendency and the change in meteorology in colleges. Value Eng 36:219–220
4.
Zurück zum Zitat Patel VL et al (2009) The coming of age of artificial intelligence in medicine. Artif Intel Med 46:5–17CrossRef Patel VL et al (2009) The coming of age of artificial intelligence in medicine. Artif Intel Med 46:5–17CrossRef
5.
Zurück zum Zitat Plis SM et al (2014) Deep learning for neuroimaging: a validation study. Front Neurosci 8:229CrossRef Plis SM et al (2014) Deep learning for neuroimaging: a validation study. Front Neurosci 8:229CrossRef
6.
Zurück zum Zitat Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef
7.
Zurück zum Zitat Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRef
8.
Zurück zum Zitat Schmidhuber J (2015) rgen. Deep learning in neural networks. Elsevier Science Ltd., Amsterdam Schmidhuber J (2015) rgen. Deep learning in neural networks. Elsevier Science Ltd., Amsterdam
9.
Zurück zum Zitat Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410CrossRef Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410CrossRef
10.
Zurück zum Zitat Johnson J, Karpathy A, Fei-Fei L (2016) DenseCap: fully convolutional localization networks for dense captioning. In: IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA. IEEE. p 4565–74 Johnson J, Karpathy A, Fei-Fei L (2016) DenseCap: fully convolutional localization networks for dense captioning. In: IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA. IEEE. p 4565–74
11.
Zurück zum Zitat Liu Z, Gao J, Yang G, Zhang H, He Y (2016) Localization and classifcation of paddy feld pests using a saliency map and deep convolutional neural network. Sci Rep 6:20410CrossRef Liu Z, Gao J, Yang G, Zhang H, He Y (2016) Localization and classifcation of paddy feld pests using a saliency map and deep convolutional neural network. Sci Rep 6:20410CrossRef
12.
Zurück zum Zitat Perednia DA, Allen A. Telemedicine technology and clinical applications. JAMA 1995 Feb 08,273(6):483–488. [Medline: 7837367] Perednia DA, Allen A. Telemedicine technology and clinical applications. JAMA 1995 Feb 08,273(6):483–488. [Medline: 7837367]
13.
Zurück zum Zitat Hao X, Zhang G, Ma S (2016) Deep learning. Int J Semantic Comput 10(03):417–439CrossRef Hao X, Zhang G, Ma S (2016) Deep learning. Int J Semantic Comput 10(03):417–439CrossRef
14.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, CambridgeMATH
15.
Zurück zum Zitat Alpaydin E (2016) Neural networks and deep learning. Machine learning: the new AI. MIT Press, Cambridge Alpaydin E (2016) Neural networks and deep learning. Machine learning: the new AI. MIT Press, Cambridge
16.
Zurück zum Zitat Theodoridis S (2016) Neural networks and deep learning. Machine Learning Theodoridis S (2016) Neural networks and deep learning. Machine Learning
17.
Zurück zum Zitat Lecun Y, Bottou L (1998) Gradient-based learning applied to document recognition[J]. Proc IEEE 86(11):2278–2324CrossRef Lecun Y, Bottou L (1998) Gradient-based learning applied to document recognition[J]. Proc IEEE 86(11):2278–2324CrossRef
18.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, pp 1097–1105
19.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556
20.
Zurück zum Zitat Szegedy C, Liu W, Jia YQ et al. (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition. pp 1–9 Szegedy C, Liu W, Jia YQ et al. (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition. pp 1–9
21.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S et al. (2016) Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2818–2826 Szegedy C, Vanhoucke V, Ioffe S et al. (2016) Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2818–2826
22.
Zurück zum Zitat Szegedy C, Ioffe S, Vanhoucke V et al. (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence Szegedy C, Ioffe S, Vanhoucke V et al. (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence
23.
Zurück zum Zitat He KM, Zhang XY, Ren SQ et al. (2016) Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. pp 770–778 He KM, Zhang XY, Ren SQ et al. (2016) Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. pp 770–778
24.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42(9):60–88CrossRef Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42(9):60–88CrossRef
25.
Zurück zum Zitat Wang L, Zhang K, Liu X et al (2017) Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Sci Rep 7(1):41545–41545CrossRef Wang L, Zhang K, Liu X et al (2017) Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Sci Rep 7(1):41545–41545CrossRef
26.
Zurück zum Zitat Liu X, Jiang J, Zhang K et al. (2017) Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLOS ONE, 12(3) Liu X, Jiang J, Zhang K et al. (2017) Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network. PLOS ONE, 12(3)
27.
Zurück zum Zitat Saini JS, Jain AK, Kumar S et al (2003) Neural network approach to classify infective keratitis. Curr Eye Res 27(2):111–116CrossRef Saini JS, Jain AK, Kumar S et al (2003) Neural network approach to classify infective keratitis. Curr Eye Res 27(2):111–116CrossRef
28.
Zurück zum Zitat Zhang K, Liu X, Liu F, et al. (2018) an interpretable and expandable deep learning diagnostic system for multiple ocular diseases: qualitative study. Journal of Medical Internet Research, 20(11) Zhang K, Liu X, Liu F, et al. (2018) an interpretable and expandable deep learning diagnostic system for multiple ocular diseases: qualitative study. Journal of Medical Internet Research, 20(11)
29.
Zurück zum Zitat Kim JY, Lee HE, Choi YH et al. (2019) CNN-based diagnosis models for canine ulcerative keratitis. Scientific Reports, 9(1) Kim JY, Lee HE, Choi YH et al. (2019) CNN-based diagnosis models for canine ulcerative keratitis. Scientific Reports, 9(1)
30.
Zurück zum Zitat Deng L, Lyu J, Huang H et al (2020) The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers. Scientific Data 7(1):1–7CrossRef Deng L, Lyu J, Huang H et al (2020) The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers. Scientific Data 7(1):1–7CrossRef
31.
Zurück zum Zitat Qiu Q, Liu Z, Zhao Y, et al. (2016) Automatic detecting cornea fungi based on texture analysis. IEEE International Conference on Smart Cloud. IEEE Qiu Q, Liu Z, Zhao Y, et al. (2016) Automatic detecting cornea fungi based on texture analysis. IEEE International Conference on Smart Cloud. IEEE
32.
Zurück zum Zitat Liu Z, Cao Y, Li Y, Xiao X, Qiu Q, Yang M, Zhao Y, Cui L (2020) Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network. Computer Methods and Programs in Biomedicine, 187 Liu Z, Cao Y, Li Y, Xiao X, Qiu Q, Yang M, Zhao Y, Cui L (2020) Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network. Computer Methods and Programs in Biomedicine, 187
34.
Zurück zum Zitat Gong T, Lee T, Stephenson C et al. (2019) A comparison of loss weighting strategies for multi task learning in deep neural networks. IEEE Access, PP(99):1–1 Gong T, Lee T, Stephenson C et al. (2019) A comparison of loss weighting strategies for multi task learning in deep neural networks. IEEE Access, PP(99):1–1
Metadaten
Titel
An Image Diagnosis Algorithm for Keratitis Based on Deep Learning
verfasst von
Qingbo Ji
Yue Jiang
Lijun Qu
Qian Yang
Han Zhang
Publikationsdatum
10.04.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10716-2

Weitere Artikel der Ausgabe 3/2022

Neural Processing Letters 3/2022 Zur Ausgabe

Neuer Inhalt