Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 3/2022

11.02.2022

FSFADet: Arbitrary-Oriented Ship Detection for SAR Images Based on Feature Separation and Feature Alignment

verfasst von: Mingming Zhu, Guoping Hu, Shuai Li, Hao Zhou, Shiqiang Wang

Erschienen in: Neural Processing Letters | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Multi-oriented objects widely appear in scene texts and optical remote sensing images, and thus rotation detection has received considerable attention. However, we observe that few arbitrary-oriented ship detection methods for synthetic aperture radar (SAR) images have been proposed before. The main reasons are the essential difference between SAR images and optical remote sensing images and the lack of labeled data for training rotation detectors. In addition, there also exist these problems of arbitrary orientation, large aspect ratio, and dense arrangement in SAR ship detection task. To address these above issues, an arbitrary-oriented ship detection method named FSFADet based on feature separation and feature alignment is proposed. Considering the lack of labeled SAR images, we establish a new SAR ship rotation detection dataset named SSRDD dataset, which is an important task when using arbitrary-oriented ship detection approaches for SAR data. A feature separation module (FS-Module) is introduced to enhance the ship object feature and weaken the background noise. Meanwhile, a refined network (R-Network) and a feature alignment module (FA-Module) are introduced to boost the SAR ship detection performance. Finally, the IoU-smooth L1 loss is introduced to the loss function to address the boundary problem. The simulation experiments show that the proposed method is superior to other arbitrary-oriented object detection methods.

Literatur
  1. Lin H, Chen H, Jin K, Zeng L, Yang J (2020) Ship detection with superpixel-level fisher vector in high-resolution sar images. IEEE Geosci Rem Sens Lett 17(2):247–251View Article
  2. Chen C, He C, Hu C, Pei H, Jiao L (2019) MSARN: a deep neural network based on an adaptive recalibration mechanism for multiscale and arbitrary-oriented SAR ship detection. IEEE Access 7:159262–159283View Article
  3. Gao G (2011) A Parzen-Window-Kernel-Based CFAR algorithm for ship detection in SAR images. IEEE Geosci Rem Sens Lett 8(3):557–561View Article
  4. Zhang T, Jiang L, Xiang D, Ban Y, Pei L, Xiong H (2019) Ship detection from PolSAR imagery using the ambiguity removal polarimetric notch filter. ISPRS J Photogram Rem Sens 157:41–58View Article
  5. Wang S, Wang M, Yang S, Jiao L (2017) New hierarchical saliency filtering for fast ship detection in high-resolution SAR images. IEEE Trans Geosci Rem Sens 55(1):351–362View Article
  6. Wang C, Bi F, Zhang W, Chen L (2017) An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci Rem Sens Lett 14(4):529–533View Article
  7. Xue R, Bai X, Zhou F (2021) Spatial-Temporal Ensemble Convolution for Sequence SAR Target Classification. IEEE Transactions on Geoscience and Remote Sensing 59(2):1250–1262. https://​doi.​org/​10.​1109/​TGRS.​2020.​2997288View Article
  8. Wang L, Bai X, Gong C, Zhou F (2021) Hybrid inference network for few-shot SAR automatic target recognition. IEEE Trans Geosci Rem Sens. https://​doi.​org/​10.​1109/​TGRS.​2021.​3051024View Article
  9. Wang L, Bai X, Xue R, Zhou F (2021) Few-shot SAR automatic target recognition based on Conv-BiLSTM prototypical network. Neurocomputing 443:235–246. https://​doi.​org/​10.​1016/​j.​neucom.​2021.​03.​037View Article
  10. Li J, Qu C, Shao J (2017) Ship detection in SAR images based on an improved faster R-CNN. In Proc. SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). Beijing 2017:1–6
  11. Chang YL, Anagaw A, Chang L, Wang Y, Hsiao CY, Lee WH (2019) Ship detection based on YOLOv2 for SAR imagery. Rem Sens 11(7):786View Article
  12. Ma J, Shao W, Ye H, Wang L, Wang H, Zheng Y, Xue X (2018) Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans Multim 20(11):3111–3122View Article
  13. Jiang Y, Zhu X, Wang X, Yang S, Li W, Wang H, Fu P, Luo Z (2017) “R2CNN: rotational region CNN for orientation robust scene text detection,” arXiv:​1706.​09579, [online] Available: https://​arxiv.​org/​abs/​1706.​09579
  14. Azimi SM, Vig E, Bahmanyar R, Korner M, Reinartz P (2018) “Towards multi-class object detection in unconstrained remote sensing imagery,” In Proc. Asian Conference on Computer Vision, Perth, Australia, pp. 150-165
  15. Yang X, Yang J, Yan J, Zhang Y, Zhang T, Guo Z, Xian S, Fu K (2019) “SCRDet: towards more robust detection for small, cluttered and rotated objects,” in Proc. Seoul, Korea (South), IEEE Int. Conf. Comput. Vis., pp 8231–8240
  16. Xu Y, Fu M, Wang Q, Wang Y, Chen K, Xia G, Bai X (2020) Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans Pattern Anal Mach Intell. https://​doi.​org/​10.​1109/​TPAMI.​2020.​2974745View Article
  17. Yang X, Liu Q, Yan J, Li A (2019) “R3Det: refined single-stage detector with feature refinement for rotating object,” a arXiv:​1908.​05612, [online] Available: https://​arxiv.​org/​abs/​1908.​05612
  18. Qian W, Yang X, Peng S, Guo Y, Yan C (2019) Learning modulated loss for rotated object detection, arXiv:​1911.​08299, [online] Available: https://​arxiv.​org/​abs/​1911.​08299
  19. Yang X, Yan J (2020) “Arbitrary-oriented object detection with circular smooth label,” arXiv:​2003.​05597, [online] Available: https://​arxiv.​org/​abs/​2003.​05597
  20. Yang X, Hou L, Zhou Y, Wang W, Yan J (2020) “Dense label encoding for boundary discontinuity free rotation detection,” arXiv:​2011.​09670, [online] Available: https://​arxiv.​org/​abs/​2011.​09670
  21. Wei S, Zeng X, Qu Q, Wang M, Su H, Shi J (2020) HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access 8:120234–120254View Article
  22. Zhang T, Zhang X, Ke X, Zhan X, Shi J, Wei S, Pan D, Li J, Su H, Zhou Y, Kumar D (2020) LS-SSDD-v1 0: a deep learning dataset dedicated to small ship detection from large-scale sentinel-1 SAR images. Rem Sens 12(18):2997View Article
  23. Lin T, Goyal P, Girshick R, He K, Dollar P (2017). Focal loss for dense object detection. Proc. IEEE Int. Conf. Comput. Vis, Venice, Italy, pp 2999–3007
  24. Yang X, Yan J, Yang X, Tang J, Liao W, He T (2020) “SCRDet++: Detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing,” arXiv:​2004.​13316, [online] Available: https://​arxiv.​org/​abs/​2004.​13316
Metadaten
Titel
FSFADet: Arbitrary-Oriented Ship Detection for SAR Images Based on Feature Separation and Feature Alignment
verfasst von
Mingming Zhu
Guoping Hu
Shuai Li
Hao Zhou
Shiqiang Wang
Publikationsdatum
11.02.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10753-5

Weitere Artikel der Ausgabe 3/2022

Neural Processing Letters 3/2022 Zur Ausgabe