Skip to main content
Erschienen in: Journal of Iron and Steel Research International 7/2022

27.11.2021 | Original Paper

Wetting and corrosion behavior between magnesia–carbon refractory and converter slags with different MgO contents

verfasst von: Rui-qiang Bai, Si-yang Liu, Fei-xiong Mao, Yuan-yuan Zhang, Xin Yang, Zhi-jun He

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 7/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of MgO content in slag on wetting and corrosion behavior between slag and MgO–C refractory was investigated. It can be known from the high-temperature wetting experiment that as the MgO content in the slag increases, the final contact angle between the slag and the MgO–C refractory gradually increases and the penetration depth of the slag into the refractory gradually decreases from 60.54 μm (when the MgO content is 8%) to 28.11 μm (when the MgO content is 12%). The CaO and SiO2 in the slag penetrate into the MgO–C refractory along the pores or surface cracks formed by carbon oxidation and react with MgO to generate a large amount of low-melting compound CaO–MgO–SiO2, which accelerates the corrosion of the refractory. As the MgO content in slag increases, the viscosity of the slag increases and the fluidity becomes worse, so that the mass transfer and diffusion of molecules or ions in the slag are weakened. In addition, the increase in MgO reduces the activity of FeO in the slag, which inhibits the interfacial chemical reaction, thereby weakening the wetting effect caused by the reaction.
Literatur
[1]
Zurück zum Zitat X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu, J. Iron Steel Res. Int. 28 (2021) 38–45.CrossRef X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu, J. Iron Steel Res. Int. 28 (2021) 38–45.CrossRef
[2]
Zurück zum Zitat Y. Zou, A. Huang, R. Wang, L. Fu, H. Gu, G. Li, Corros. Sci. 167 (2020) 108517.CrossRef Y. Zou, A. Huang, R. Wang, L. Fu, H. Gu, G. Li, Corros. Sci. 167 (2020) 108517.CrossRef
[3]
Zurück zum Zitat A. Huang, Y. Wang, Y. Zou, H. Gu, L. Fu, Ceram. Int. 44 (2018) 14617–14624.CrossRef A. Huang, Y. Wang, Y. Zou, H. Gu, L. Fu, Ceram. Int. 44 (2018) 14617–14624.CrossRef
[4]
Zurück zum Zitat S. Amini, M. Brungs, S. Jahanshahi, O. Ostrovski, ISIJ Int. 46 (2006) 1554–1559.CrossRef S. Amini, M. Brungs, S. Jahanshahi, O. Ostrovski, ISIJ Int. 46 (2006) 1554–1559.CrossRef
[5]
Zurück zum Zitat X. Yang, Z. He, J. Yu, Y. Zhang, L. Yuan, F. Mao, Ceram. Int. 46 (2020) 10180–10185.CrossRef X. Yang, Z. He, J. Yu, Y. Zhang, L. Yuan, F. Mao, Ceram. Int. 46 (2020) 10180–10185.CrossRef
[7]
Zurück zum Zitat X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, S.X. Zhao, W.G. Yang, F. Qian, J.K. Yu, J. Aust. Ceram. Soc. 55 (2019) 913–920.CrossRef X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, S.X. Zhao, W.G. Yang, F. Qian, J.K. Yu, J. Aust. Ceram. Soc. 55 (2019) 913–920.CrossRef
[8]
Zurück zum Zitat L.M. Chen, L.F. Zhang, P. Shen, Chin. J. Eng. 40 (2018) 1139–1157. L.M. Chen, L.F. Zhang, P. Shen, Chin. J. Eng. 40 (2018) 1139–1157.
[9]
Zurück zum Zitat X. Yang, Y.Y. Zhang, L. Yuan, F.X. Mao, J.K. Yu, Z.J. He, JOM 72 (2020) 3521–3528.CrossRef X. Yang, Y.Y. Zhang, L. Yuan, F.X. Mao, J.K. Yu, Z.J. He, JOM 72 (2020) 3521–3528.CrossRef
[10]
Zurück zum Zitat Y.F. Pan, H.X. Zhao, Y. Wu, S.Q. Li, K. Hou, Z.F. Yuan, Iron and Steel 48 (2013) No. 5, 35–40. Y.F. Pan, H.X. Zhao, Y. Wu, S.Q. Li, K. Hou, Z.F. Yuan, Iron and Steel 48 (2013) No. 5, 35–40.
[11]
Zurück zum Zitat J. Park, J. Jeon, K. Lee, J.H. Park, Y. Chung, Metall. Mater. Trans. B 47 (2016) 1832–1838.CrossRef J. Park, J. Jeon, K. Lee, J.H. Park, Y. Chung, Metall. Mater. Trans. B 47 (2016) 1832–1838.CrossRef
[12]
Zurück zum Zitat D. Xie, T. Tran, S. Jahanshahi, High Temp. Mater. Process. 20 (2001) 293–302.CrossRef D. Xie, T. Tran, S. Jahanshahi, High Temp. Mater. Process. 20 (2001) 293–302.CrossRef
[13]
[14]
Zurück zum Zitat P. Shen, L.F. Zhang, W. Yang, Y. Wang, Iron and Steel 51 (2016) No. 12, 31–40. P. Shen, L.F. Zhang, W. Yang, Y. Wang, Iron and Steel 51 (2016) No. 12, 31–40.
[15]
Zurück zum Zitat Z. Yuan, Y. Wu, H. Zhao, H. Matsuura, F. Tsukihashi, ISIJ Int. 53 (2013) 598–602.CrossRef Z. Yuan, Y. Wu, H. Zhao, H. Matsuura, F. Tsukihashi, ISIJ Int. 53 (2013) 598–602.CrossRef
[16]
Zurück zum Zitat S.H. Heo, K. Lee, Y. Chung, Trans. Nonferrous Met. Soc. China 22 (2012) 870–875.CrossRef S.H. Heo, K. Lee, Y. Chung, Trans. Nonferrous Met. Soc. China 22 (2012) 870–875.CrossRef
[17]
Zurück zum Zitat J. Park, K. Lee, J.J. Pak, Y. Chung, ISIJ Int. 54 (2014) 2059–2063.CrossRef J. Park, K. Lee, J.J. Pak, Y. Chung, ISIJ Int. 54 (2014) 2059–2063.CrossRef
[18]
Zurück zum Zitat Z.Y. Liu, J.K. Yu, X. Yang, E.D. Jin, L. Yuan, Materials 11 (2018) 883.CrossRef Z.Y. Liu, J.K. Yu, X. Yang, E.D. Jin, L. Yuan, Materials 11 (2018) 883.CrossRef
[19]
Zurück zum Zitat Z.Y. Liu, L. Yuan, E.D. Jin, X. Yang, J.K. Yu, Ceram. Int. 45 (2019) 718–724.CrossRef Z.Y. Liu, L. Yuan, E.D. Jin, X. Yang, J.K. Yu, Ceram. Int. 45 (2019) 718–724.CrossRef
[20]
Zurück zum Zitat H. Wang, R. Caballero, D. Sichen, J. Eur. Ceram. Soc. 38 (2018) 789–797.CrossRef H. Wang, R. Caballero, D. Sichen, J. Eur. Ceram. Soc. 38 (2018) 789–797.CrossRef
[21]
[22]
Zurück zum Zitat N. Siddiqi, B. Bhoi, R.K. Paramguru, V. Sahajwalla, O. Ostrovski, Ironmak. Steelmak. 27 (2000) 367–372.CrossRef N. Siddiqi, B. Bhoi, R.K. Paramguru, V. Sahajwalla, O. Ostrovski, Ironmak. Steelmak. 27 (2000) 367–372.CrossRef
[23]
Zurück zum Zitat D.Y. Wang, X.B. Li, H.H. Wang, Y. Mi, M.F. Jiang, Y.C. Zhang, J. Non-Cryst. Solids 358 (2012) 1196–1201.CrossRef D.Y. Wang, X.B. Li, H.H. Wang, Y. Mi, M.F. Jiang, Y.C. Zhang, J. Non-Cryst. Solids 358 (2012) 1196–1201.CrossRef
[24]
Zurück zum Zitat A.A. Kazakov, Russian Metall. 6 (1997) 25–29. A.A. Kazakov, Russian Metall. 6 (1997) 25–29.
[25]
Zurück zum Zitat B.J. Monaghan, S.A. Nightingale, Q. Dong, M. Funcik, Engineering 2 (2010) 496–501.CrossRef B.J. Monaghan, S.A. Nightingale, Q. Dong, M. Funcik, Engineering 2 (2010) 496–501.CrossRef
[26]
Zurück zum Zitat H.H. Wang, Y.J. Xu, K. Jiang, B. Ge, T.P. Qu, D.Y. Wang, Mater. Rep. 31 (2017) No. 20, 96–100. H.H. Wang, Y.J. Xu, K. Jiang, B. Ge, T.P. Qu, D.Y. Wang, Mater. Rep. 31 (2017) No. 20, 96–100.
[27]
[28]
Zurück zum Zitat M. Guo, S. Parada, P.T. Jones, E. Boydens, J.V. Dyck, B. Blanpain, P. Wollants, J. Eur. Ceram. Soc. 29 (2009) 1053–1060.CrossRef M. Guo, S. Parada, P.T. Jones, E. Boydens, J.V. Dyck, B. Blanpain, P. Wollants, J. Eur. Ceram. Soc. 29 (2009) 1053–1060.CrossRef
Metadaten
Titel
Wetting and corrosion behavior between magnesia–carbon refractory and converter slags with different MgO contents
verfasst von
Rui-qiang Bai
Si-yang Liu
Fei-xiong Mao
Yuan-yuan Zhang
Xin Yang
Zhi-jun He
Publikationsdatum
27.11.2021
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 7/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00695-y

Weitere Artikel der Ausgabe 7/2022

Journal of Iron and Steel Research International 7/2022 Zur Ausgabe

Preface

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.