Skip to main content
Erschienen in: Neural Computing and Applications 9/2020

05.01.2019 | Original Article

Whale swarm algorithm with the mechanism of identifying and escaping from extreme points for multimodal function optimization

verfasst von: Bing Zeng, Xinyu Li, Liang Gao, Yuyan Zhang, Haozhen Dong

Erschienen in: Neural Computing and Applications | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most real-world optimization problems often come with multiple global optima or local optima. Therefore, increasing niching metaheuristic algorithms, which devote to finding multiple optima in a single run, are developed to solve these multimodal optimization problems. However, there are two difficulties urgently to be solved for most existing niching metaheuristic algorithms: how to set the niching parameter values for different optimization problems and how to jump out of the local optima efficiently. These two difficulties limit their practicality largely. Based on Whale Swarm Algorithm (WSA) we proposed previously, this paper presents a new multimodal optimizer named WSA with Iterative Counter (WSA-IC) to address these two difficulties. On the one hand, WSA-IC improves the iteration rule of the original WSA for multimodal optimization, which removes the need of specifying different values of attenuation coefficient for different problems to form multiple subpopulations, without introducing any niching parameter. On the other hand, WSA-IC enables the identification of extreme points during the iterations relying on two new parameters (i.e., stability threshold \(T_{\mathrm{s}}\) and fitness threshold \(T_{\mathrm{f}}\)), to jump out of the located extreme points. Moreover, the convergence of WSA-IC is proved. Finally, the proposed WSA-IC is compared with several niching metaheuristic algorithms on CEC2015 niching benchmark test functions and on five additional high-dimensional multimodal functions. The experimental results demonstrate that WSA-IC statistically outperforms other niching metaheuristic algorithms on most test functions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tasgetiren MF, Kizilay D, Pan Q-K, Suganthan PN (2017) Iterated greedy algorithms for the blocking flowshop scheduling problem with makespan criterion. Comput Oper Res 77:111–126MathSciNetMATH Tasgetiren MF, Kizilay D, Pan Q-K, Suganthan PN (2017) Iterated greedy algorithms for the blocking flowshop scheduling problem with makespan criterion. Comput Oper Res 77:111–126MathSciNetMATH
2.
Zurück zum Zitat Lin G, Zhu W, Ali MM (2016) An effective hybrid memetic algorithm for the minimum weight dominating set problem. IEEE Trans Evol Comput 20(6):892–907 Lin G, Zhu W, Ali MM (2016) An effective hybrid memetic algorithm for the minimum weight dominating set problem. IEEE Trans Evol Comput 20(6):892–907
3.
Zurück zum Zitat Zhang H, Cao X, Ho JKL, Chow TWS (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inform 13(2):520–531 Zhang H, Cao X, Ho JKL, Chow TWS (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inform 13(2):520–531
4.
Zurück zum Zitat Ciancio C, Ambrogio G, Gagliardi F, Musmanno R (2016) Heuristic techniques to optimize neural network architecture in manufacturing applications. Neural Comput Appl 27(7):2001–2015 Ciancio C, Ambrogio G, Gagliardi F, Musmanno R (2016) Heuristic techniques to optimize neural network architecture in manufacturing applications. Neural Comput Appl 27(7):2001–2015
5.
Zurück zum Zitat Şevkli AZ, Güler B (2017) A multi-phase oscillated variable neighbourhood search algorithm for a real-world open vehicle routing problem. Appl Soft Comput 58:128–144 Şevkli AZ, Güler B (2017) A multi-phase oscillated variable neighbourhood search algorithm for a real-world open vehicle routing problem. Appl Soft Comput 58:128–144
7.
Zurück zum Zitat Raja MAZ, Ahmed U, Zameer A, Kiani AK, Chaudhary NI (2017) Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3019-3 Raja MAZ, Ahmed U, Zameer A, Kiani AK, Chaudhary NI (2017) Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem. Neural Comput Appl. https://​doi.​org/​10.​1007/​s00521-017-3019-3
8.
Zurück zum Zitat Zhang H, Llorca J, Davis CC, Milner SD (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222 Zhang H, Llorca J, Davis CC, Milner SD (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Mob Comput 11(7):1207–1222
9.
Zurück zum Zitat Li X (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169 Li X (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169
11.
Zurück zum Zitat Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms. Lawrence Erlbaum, Hillsdale, NJ, pp 41–49 Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms. Lawrence Erlbaum, Hillsdale, NJ, pp 41–49
12.
Zurück zum Zitat Yin X, Germay N (1993) A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Artificial neural nets and genetic algorithms. Springer, pp 450–457 Yin X, Germay N (1993) A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. In: Artificial neural nets and genetic algorithms. Springer, pp 450–457
13.
Zurück zum Zitat Harik GR (1995) Finding multimodal solutions using restricted tournament selection. In: ICGA, pp 24–31 Harik GR (1995) Finding multimodal solutions using restricted tournament selection. In: ICGA, pp 24–31
14.
Zurück zum Zitat Bessaou M, Pétrowski A, Siarry P (2000) Island model cooperating with speciation for multimodal optimization. In: International conference on parallel problem solving from nature. Springer, pp 437–446 Bessaou M, Pétrowski A, Siarry P (2000) Island model cooperating with speciation for multimodal optimization. In: International conference on parallel problem solving from nature. Springer, pp 437–446
15.
Zurück zum Zitat Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Proceedings of the 3rd international conference on genetic algorithms. Morgan Kaufmann Publishers Inc., pp 42–50 Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Proceedings of the 3rd international conference on genetic algorithms. Morgan Kaufmann Publishers Inc., pp 42–50
16.
Zurück zum Zitat Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02. IEEE, pp 1671–1676 Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02. IEEE, pp 1671–1676
17.
Zurück zum Zitat Li X, Epitropakis M, Deb K, Engelbrecht A (2016) Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans Evol Comput 21(4):518–538 Li X, Epitropakis M, Deb K, Engelbrecht A (2016) Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans Evol Comput 21(4):518–538
18.
Zurück zum Zitat Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Congress on evolutionary computation, 2004. CEC2004. IEEE, pp 1382–1389 Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Congress on evolutionary computation, 2004. CEC2004. IEEE, pp 1382–1389
19.
Zurück zum Zitat Mahfoud SW (1992) Crowding and preselection revisited. Urbana 51:61801 Mahfoud SW (1992) Crowding and preselection revisited. Urbana 51:61801
20.
Zurück zum Zitat Mengshoel OJ, Goldberg DE (1999) Probabilistic crowding: deterministic crowding with probabilistic replacement. In: Proceedings of the genetic and evolutionary computation conference (GECCO-99), p 409 Mengshoel OJ, Goldberg DE (1999) Probabilistic crowding: deterministic crowding with probabilistic replacement. In: Proceedings of the genetic and evolutionary computation conference (GECCO-99), p 409
21.
Zurück zum Zitat Ursem RK (1999) Multinational evolutionary algorithms. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99. IEEE, pp 1633–1640 Ursem RK (1999) Multinational evolutionary algorithms. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99. IEEE, pp 1633–1640
22.
Zurück zum Zitat Stoean CL, Preuss M, Stoean R, Dumitrescu D (2007) Disburdening the species conservation evolutionary algorithm of arguing with radii. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 1420–1427 Stoean CL, Preuss M, Stoean R, Dumitrescu D (2007) Disburdening the species conservation evolutionary algorithm of arguing with radii. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 1420–1427
23.
Zurück zum Zitat Zeng B, Gao L, Li X (2017) Whale swarm algorithm for function optimization. In: Huang D-S, Bevilacqua V, Premaratne P, Gupta P (eds) Intelligent computing theories and application: 13th international conference, ICIC 2017, Liverpool, UK, August 7–10, 2017, Proceedings, Part I. Springer, Cham, pp 624–639. https://doi.org/10.1007/978-3-319-63309-1_55 Zeng B, Gao L, Li X (2017) Whale swarm algorithm for function optimization. In: Huang D-S, Bevilacqua V, Premaratne P, Gupta P (eds) Intelligent computing theories and application: 13th international conference, ICIC 2017, Liverpool, UK, August 7–10, 2017, Proceedings, Part I. Springer, Cham, pp 624–639. https://​doi.​org/​10.​1007/​978-3-319-63309-1_​55
24.
Zurück zum Zitat Das S, Maity S, Qu B-Y, Suganthan PN (2011) Real-parameter evolutionary multimodal optimizationąłA survey of the state-of-the-art. Swarm Evol Comput 1(2):71–88 Das S, Maity S, Qu B-Y, Suganthan PN (2011) Real-parameter evolutionary multimodal optimizationąłA survey of the state-of-the-art. Swarm Evol Comput 1(2):71–88
25.
Zurück zum Zitat Li J-P, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal function optimization. Evol Comput 10(3):207–234 Li J-P, Balazs ME, Parks GT, Clarkson PJ (2002) A species conserving genetic algorithm for multimodal function optimization. Evol Comput 10(3):207–234
26.
Zurück zum Zitat Li X (2005) Efficient differential evolution using speciation for multimodal function optimization. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM, pp 873–880 Li X (2005) Efficient differential evolution using speciation for multimodal function optimization. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM, pp 873–880
27.
Zurück zum Zitat Li X (2004) Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Genetic and evolutionary computation GECCO 2004. Springer, pp 105–116 Li X (2004) Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Genetic and evolutionary computation GECCO 2004. Springer, pp 105–116
28.
Zurück zum Zitat Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimization. Evol Comput 1(2):101–125 Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimization. Evol Comput 1(2):101–125
29.
Zurück zum Zitat Brits R, Engelbrecht AP, Van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning. Orchid Country Club, Singapore, pp 692–696 Brits R, Engelbrecht AP, Van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning. Orchid Country Club, Singapore, pp 692–696
30.
Zurück zum Zitat Stoean C, Preuss M, Stoean R, Dumitrescu D (2010) Multimodal optimization by means of a topological species conservation algorithm. IEEE Trans Evol Comput 14(6):842–864 Stoean C, Preuss M, Stoean R, Dumitrescu D (2010) Multimodal optimization by means of a topological species conservation algorithm. IEEE Trans Evol Comput 14(6):842–864
31.
Zurück zum Zitat Deb K, Saha A (2010) Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach. In: Proceedings of the 12th annual conference on genetic and evolutionary computation. ACM, pp 447–454 Deb K, Saha A (2010) Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach. In: Proceedings of the 12th annual conference on genetic and evolutionary computation. ACM, pp 447–454
32.
Zurück zum Zitat Li L, Tang K (2015) History-based topological speciation for multimodal optimization. IEEE Trans Evol Comput 19(1):136–150MathSciNet Li L, Tang K (2015) History-based topological speciation for multimodal optimization. IEEE Trans Evol Comput 19(1):136–150MathSciNet
33.
Zurück zum Zitat Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295 Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295
34.
Zurück zum Zitat Li X (2007) A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 78–85 Li X (2007) A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 78–85
35.
Zurück zum Zitat Qu B-Y, Suganthan PN, Liang J-J (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evol Comput 16(5):601–614 Qu B-Y, Suganthan PN, Liang J-J (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evol Comput 16(5):601–614
36.
Zurück zum Zitat Qu B-Y, Suganthan P, Das S (2013) A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans Evol Comput 17(3):387–402 Qu B-Y, Suganthan P, Das S (2013) A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans Evol Comput 17(3):387–402
37.
Zurück zum Zitat Yazdani S, Nezamabadi-pour H, Kamyab S (2014) A gravitational search algorithm for multimodal optimization. Swarm Evol Comput 14:1–14 Yazdani S, Nezamabadi-pour H, Kamyab S (2014) A gravitational search algorithm for multimodal optimization. Swarm Evol Comput 14:1–14
38.
Zurück zum Zitat Wang Y, Li H-X, Yen GG, Song W (2015) MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans Cybern 45(4):830–843 Wang Y, Li H-X, Yen GG, Song W (2015) MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Trans Cybern 45(4):830–843
Metadaten
Titel
Whale swarm algorithm with the mechanism of identifying and escaping from extreme points for multimodal function optimization
verfasst von
Bing Zeng
Xinyu Li
Liang Gao
Yuyan Zhang
Haozhen Dong
Publikationsdatum
05.01.2019
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3949-4

Weitere Artikel der Ausgabe 9/2020

Neural Computing and Applications 9/2020 Zur Ausgabe

Premium Partner