Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2023

01.01.2023 | Industrial Application Paper

Wheel impact test by deep learning: prediction of location and magnitude of maximum stress

verfasst von: Seungyeon Shin, Ah-hyeon Jin, Soyoung Yoo, Sunghee Lee, ChangGon Kim, Sungpil Heo, Namwoo Kang

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For ensuring vehicle safety, the impact performance of wheels during wheel development must be ensured through a wheel impact test. However, manufacturing and testing a real wheel requires a significant time and money because developing an optimal wheel design requires numerous iterative processes to modify the wheel design and verify the safety performance. Accordingly, wheel impact tests have been replaced by computer simulations such as finite element analysis (FEA); however, it still incurs high computational costs for modeling and analysis, and requires FEA experts. In this study, we present an aluminum road wheel impact performance prediction model based on deep learning that replaces computationally expensive and time-consuming 3D FEA. For this purpose, 2D disk-view wheel image data, 3D wheel voxel data, and barrier mass values used for the wheel impact test were utilized as the inputs to predict the magnitude of the maximum von Mises stress, corresponding location, and the stress distribution of the 2D disk-view. The input data were first compressed into a latent space with a 3D convolutional variational autoencoder (cVAE) and 2D convolutional autoencoder (cAE). Subsequently, the fully connected layers were used to predict the impact performance, and a decoder was used to predict the stress distribution heatmap of the 2D disk-view. The proposed model can replace the impact test in the early wheel-development stage by predicting the impact performance in real-time and can be used without domain knowledge. The time required for the wheel development process can be reduced using this mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed E, Saint A, Shabayek AER, Cherenkova K, Das R, Gusev G, Aouada D, Ottersten B (2018) A survey on deep learning advances on different 3D data representations. arXiv preprint arXiv:1808.01462 Ahmed E, Saint A, Shabayek AER, Cherenkova K, Das R, Gusev G, Aouada D, Ottersten B (2018) A survey on deep learning advances on different 3D data representations. arXiv preprint arXiv:​1808.​01462
Zurück zum Zitat Bachmann R, Mizrahi D, Atanov A, Zamir A (2022) MultiMAE: Multi-modal Multi-task Masked Autoencoders. arXiv preprint arXiv:2204.01678 Bachmann R, Mizrahi D, Atanov A, Zamir A (2022) MultiMAE: Multi-modal Multi-task Masked Autoencoders. arXiv preprint arXiv:​2204.​01678
Zurück zum Zitat Bello SA, Yu S, Wang C, Adam JM, Li J (2020) Deep learning on 3D point clouds. Remote Sens 12:1729CrossRef Bello SA, Yu S, Wang C, Adam JM, Li J (2020) Deep learning on 3D point clouds. Remote Sens 12:1729CrossRef
Zurück zum Zitat Chang CL, Yang SH (2009) Simulation of wheel impact test using finite element method. Eng Failure Anal 16:1711–1719CrossRef Chang CL, Yang SH (2009) Simulation of wheel impact test using finite element method. Eng Failure Anal 16:1711–1719CrossRef
Zurück zum Zitat Essien A, Giannetti C (2020) A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders. IEEE Trans Ind Informat 16:6069–6078CrossRef Essien A, Giannetti C (2020) A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders. IEEE Trans Ind Informat 16:6069–6078CrossRef
Zurück zum Zitat Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: PMLR International Conference Machine Learning (pp 1180–1189) Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropagation. In: PMLR International Conference Machine Learning (pp 1180–1189)
Zurück zum Zitat Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for autonomous driving. J Field Robot 37:362–386CrossRef Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for autonomous driving. J Field Robot 37:362–386CrossRef
Zurück zum Zitat Gu Y, Zhang C, Golub MV (2022) Physics-informed neural networks for analysis of 2D thin-walled structures. Eng Anal Bound Elements 145:161–172CrossRef Gu Y, Zhang C, Golub MV (2022) Physics-informed neural networks for analysis of 2D thin-walled structures. Eng Anal Bound Elements 145:161–172CrossRef
Zurück zum Zitat Häne C, Tulsiani S, Malik J (2017, October) Hierarchical surface prediction for 3d object reconstruction. In: 2017 IEEE International Conference 3D Vision (3DV) (pp 412–420) Häne C, Tulsiani S, Malik J (2017, October) Hierarchical surface prediction for 3d object reconstruction. In: 2017 IEEE International Conference 3D Vision (3DV) (pp 412–420)
Zurück zum Zitat Jang S, Yoo S, Kang N (2022) Generative design by reinforcement learning: enhancing the diversity of topology optimization designs. Comput Aided Des 146:103225CrossRef Jang S, Yoo S, Kang N (2022) Generative design by reinforcement learning: enhancing the diversity of topology optimization designs. Comput Aided Des 146:103225CrossRef
Zurück zum Zitat Khadilkar A, Wang J, Rai R (2019) Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int J Adv Manufactur Technol 102:2555–2569CrossRef Khadilkar A, Wang J, Rai R (2019) Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int J Adv Manufactur Technol 102:2555–2569CrossRef
Zurück zum Zitat Kim S, Jwa M, Lee S, Park S, Kang N (2022) Deep learning-based inverse design for engineering systems: multidisciplinary design optimization of automotive brakes. Struct Multidisc Optim 65:323CrossRef Kim S, Jwa M, Lee S, Park S, Kang N (2022) Deep learning-based inverse design for engineering systems: multidisciplinary design optimization of automotive brakes. Struct Multidisc Optim 65:323CrossRef
Zurück zum Zitat Lee S, Kim H, Lieu QX, Lee J (2020) CNN-based image recognition for topology optimization. Knowl-Based Sys 108:105887CrossRef Lee S, Kim H, Lieu QX, Lee J (2020) CNN-based image recognition for topology optimization. Knowl-Based Sys 108:105887CrossRef
Zurück zum Zitat Liang L, Liu M, Martin C, Sun W (2018) A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J R Soc Interface 15:20170844CrossRef Liang L, Liu M, Martin C, Sun W (2018) A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J R Soc Interface 15:20170844CrossRef
Zurück zum Zitat Madani A, Bakhaty A, Kim J, Mubarak Y, Mofrad MR (2019) Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis. J Biomech Eng 141:25CrossRef Madani A, Bakhaty A, Kim J, Mubarak Y, Mofrad MR (2019) Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis. J Biomech Eng 141:25CrossRef
Zurück zum Zitat Nie Z, Jiang H, Kara LB (2020) Stress field prediction in cantilevered structures using convolutional neural networks. J Comput Infor Sci Eng 20:011002CrossRef Nie Z, Jiang H, Kara LB (2020) Stress field prediction in cantilevered structures using convolutional neural networks. J Comput Infor Sci Eng 20:011002CrossRef
Zurück zum Zitat Oh S, Jung Y, Kim S, Lee I, Kang N (2019) Deep generative design: Integration of topology optimization and generative models. J Mech Design 141:89CrossRef Oh S, Jung Y, Kim S, Lee I, Kang N (2019) Deep generative design: Integration of topology optimization and generative models. J Mech Design 141:89CrossRef
Zurück zum Zitat Ostad-Ali-Askari K, Shayannejad M, Ghorbanizadeh-Kharazi H (2017) Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan. Iran KSCE J Civil Eng 21:134–140CrossRef Ostad-Ali-Askari K, Shayannejad M, Ghorbanizadeh-Kharazi H (2017) Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan. Iran KSCE J Civil Eng 21:134–140CrossRef
Zurück zum Zitat Ostad-Ali-Askari K, Shayan M (2021) Subsurface drain spacing in the unsteady conditions by HYDRUS-3D and artificial neural networks. Arabian J Geosci 14:1–14CrossRef Ostad-Ali-Askari K, Shayan M (2021) Subsurface drain spacing in the unsteady conditions by HYDRUS-3D and artificial neural networks. Arabian J Geosci 14:1–14CrossRef
Zurück zum Zitat Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceeding of the IEEE Conference Computer Vision Pattern Recognition (pp 652–660) Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceeding of the IEEE Conference Computer Vision Pattern Recognition (pp 652–660)
Zurück zum Zitat Qian C, Ye W (2021) Accelerating gradient-based topology optimization design with dual-model artificial neural networks. Struct Multidisc Optim 63:1687–1707CrossRef Qian C, Ye W (2021) Accelerating gradient-based topology optimization design with dual-model artificial neural networks. Struct Multidisc Optim 63:1687–1707CrossRef
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707CrossRefMATH Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707CrossRefMATH
Zurück zum Zitat Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367:1026–1030CrossRefMATH Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367:1026–1030CrossRefMATH
Zurück zum Zitat Riegler G, Osman UA, Geiger A (2017) Octnet: Learning deep 3d representations at high resolutions. In: Proceeding of the IEEE Conference Computer Vision Pattern Recog (pp 3577–3586) Riegler G, Osman UA, Geiger A (2017) Octnet: Learning deep 3d representations at high resolutions. In: Proceeding of the IEEE Conference Computer Vision Pattern Recog (pp 3577–3586)
Zurück zum Zitat Shin S, Shin D, Kang N (2022) Topology optimization via machine learning and deep learning: A review. arXiv preprint arXiv:2210.10782 Shin S, Shin D, Kang N (2022) Topology optimization via machine learning and deep learning: A review. arXiv preprint arXiv:2210.10782
Zurück zum Zitat Tatarchenko M, Dosovitskiy A, Brox T (2017) Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. In: Proceeding of the IEEE International Conference Computer Vision (pp 2088–2096) Tatarchenko M, Dosovitskiy A, Brox T (2017) Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. In: Proceeding of the IEEE International Conference Computer Vision (pp 2088–2096)
Zurück zum Zitat Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:8MATH Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:8MATH
Zurück zum Zitat Yoo S, Kang N (2021) Explainable artificial intelligence for manufacturing cost estimation and machining feature visualization. Expert Syst Appl 183:115430 Yoo S, Kang N (2021) Explainable artificial intelligence for manufacturing cost estimation and machining feature visualization. Expert Syst Appl 183:115430
Zurück zum Zitat Yoo S, Lee S, Kim S, Hwang KH, Park JH, Kang N (2021) Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel. Struct Multidisc Optim 64:2725–2747CrossRef Yoo S, Lee S, Kim S, Hwang KH, Park JH, Kang N (2021) Integrating deep learning into CAD/CAE system: generative design and evaluation of 3D conceptual wheel. Struct Multidisc Optim 64:2725–2747CrossRef
Zurück zum Zitat Zheng L, Kumar S, Kochmann DM (2021) Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput Methodsin Appl Mech Eng 383:113894CrossRefMATH Zheng L, Kumar S, Kochmann DM (2021) Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput Methodsin Appl Mech Eng 383:113894CrossRefMATH
Metadaten
Titel
Wheel impact test by deep learning: prediction of location and magnitude of maximum stress
verfasst von
Seungyeon Shin
Ah-hyeon Jin
Soyoung Yoo
Sunghee Lee
ChangGon Kim
Sungpil Heo
Namwoo Kang
Publikationsdatum
01.01.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2023
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-022-03485-6

Weitere Artikel der Ausgabe 1/2023

Structural and Multidisciplinary Optimization 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.