Skip to main content
Erschienen in: Neural Computing and Applications 2/2020

12.11.2018 | IWANN2017: Learning algorithms with real world applications

Wind power ramp event detection with a hybrid neuro-evolutionary approach

verfasst von: L. Cornejo-Bueno, C. Camacho-Gómez, A. Aybar-Ruiz, L. Prieto, A. Barea-Ropero, S. Salcedo-Sanz

Erschienen in: Neural Computing and Applications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a hybrid system for wind power ramp events (WPREs) detection is proposed. The system is based on modeling the detection problem as a binary classification problem from atmospheric reanalysis data inputs. Specifically, a hybrid neuro-evolutionary algorithm is proposed, which combines artificial neural networks such as extreme learning machine (ELM), with evolutionary algorithms to optimize the trained models and carry out a feature selection on the input variables. The phenomenon under study occurs with a low probability, and for this reason the classification problem is quite unbalanced. Therefore, is necessary to resort to techniques focused on providing a balance in the classes, such as the synthetic minority over-sampling technique approach, the model applied in this work. The final model obtained is evaluated by a test set using both ELM and support vector machine algorithms, and its accuracy performance is analyzed. The proposed approach has been tested in a real problem of WPREs detection in three wind farms located in different areas of Spain, in order to see the spatial generalization of the method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Kumar Y, Ringenberg J, Depuru SS, Devabhaktuni VK, Lee JW, Nikolaidis E, Andersen B, Afjeh A (2016) Wind energy: trends and enabling technologies. Renew Sustain Energy Rev 53:209–224CrossRef Kumar Y, Ringenberg J, Depuru SS, Devabhaktuni VK, Lee JW, Nikolaidis E, Andersen B, Afjeh A (2016) Wind energy: trends and enabling technologies. Renew Sustain Energy Rev 53:209–224CrossRef
3.
Zurück zum Zitat Yan J, Liu Y, Han S, Wang Y, Feng S (2015) Reviews on uncertainty analysis of wind power forecasting. Renew Sustain Energy Rev 52:1322–1330CrossRef Yan J, Liu Y, Han S, Wang Y, Feng S (2015) Reviews on uncertainty analysis of wind power forecasting. Renew Sustain Energy Rev 52:1322–1330CrossRef
4.
Zurück zum Zitat Tascikaraoglu A, Uzunoglu M (2014) A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34:243–254CrossRef Tascikaraoglu A, Uzunoglu M (2014) A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34:243–254CrossRef
5.
Zurück zum Zitat Salcedo-Sanz S, Pastor-Sánchez A, Prieto L, Blanco-Aguilera A, García-Herrera R (2014) Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization: extreme learning machine approach. Energy Convers Manag 87:10–18CrossRef Salcedo-Sanz S, Pastor-Sánchez A, Prieto L, Blanco-Aguilera A, García-Herrera R (2014) Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization: extreme learning machine approach. Energy Convers Manag 87:10–18CrossRef
6.
Zurück zum Zitat Taslimi Renani E, Elias MF, Rahim NA (2016) Using data-driven approach for wind power prediction: a comparative study. Energy Convers Manag 118:193–203CrossRef Taslimi Renani E, Elias MF, Rahim NA (2016) Using data-driven approach for wind power prediction: a comparative study. Energy Convers Manag 118:193–203CrossRef
7.
Zurück zum Zitat Capellaro M (2016) Prediction of site specific wind energy value factors. Renew Energy 87(1):430–436CrossRef Capellaro M (2016) Prediction of site specific wind energy value factors. Renew Energy 87(1):430–436CrossRef
8.
Zurück zum Zitat Munteanu I, Besancon G (2016) Identification-based prediction of wind park power generation. Renew Energy 97:422–433CrossRef Munteanu I, Besancon G (2016) Identification-based prediction of wind park power generation. Renew Energy 97:422–433CrossRef
9.
Zurück zum Zitat Gallego-Castillo C, Cuerva-Tejero A, López-García O (2015) A review on the recent history of wind power ramp forecasting. Renew Sustain Energy Rev 52:1148–1157CrossRef Gallego-Castillo C, Cuerva-Tejero A, López-García O (2015) A review on the recent history of wind power ramp forecasting. Renew Sustain Energy Rev 52:1148–1157CrossRef
10.
Zurück zum Zitat Ouyang T, Zha X, Qin L (2013) A survey of wind power ramp forecasting. Energy Power Eng 5:368–372CrossRef Ouyang T, Zha X, Qin L (2013) A survey of wind power ramp forecasting. Energy Power Eng 5:368–372CrossRef
11.
Zurück zum Zitat Cui M, Ke D, Sun Y, Gan D, Zhang J, Hodge BM (2015) Wind power ramp event forecasting using a stochastic scenario generation method. IEEE Trans Sustain Energy 6(2):422–433CrossRef Cui M, Ke D, Sun Y, Gan D, Zhang J, Hodge BM (2015) Wind power ramp event forecasting using a stochastic scenario generation method. IEEE Trans Sustain Energy 6(2):422–433CrossRef
12.
Zurück zum Zitat Barber C, Bockhorst J, Roebber P (2010) Auto-regressive HMM inference with incomplete data for short-horizon wind forecasting. In: Proceedings of the 24th annual conference on neural information processing systems (NIPS), pp 1-9 Barber C, Bockhorst J, Roebber P (2010) Auto-regressive HMM inference with incomplete data for short-horizon wind forecasting. In: Proceedings of the 24th annual conference on neural information processing systems (NIPS), pp 1-9
13.
Zurück zum Zitat Gallego-Castillo C, Costa A, Cuerva-Tejero A (2011) Improving short-term forecasting during ramp events by means of regime-switching artificial neural networks. Adv Sci Res 6:55–58CrossRef Gallego-Castillo C, Costa A, Cuerva-Tejero A (2011) Improving short-term forecasting during ramp events by means of regime-switching artificial neural networks. Adv Sci Res 6:55–58CrossRef
14.
Zurück zum Zitat Cui M, Zhang J, Florita AR, Hodge BM, Ke D, Sun Y (2015) An optimized swinging door algorithm for wind power ramp event detection. In: Proceedings of the IEEE power and energy society general meeting, Denver, Colorado, pp 1–5 Cui M, Zhang J, Florita AR, Hodge BM, Ke D, Sun Y (2015) An optimized swinging door algorithm for wind power ramp event detection. In: Proceedings of the IEEE power and energy society general meeting, Denver, Colorado, pp 1–5
15.
Zurück zum Zitat Bossavy A, Girard R, Kariniotakis G (2015) An edge model for the evaluation of wind power ramps characterization approaches. Wind Energy 18:1169–1184CrossRef Bossavy A, Girard R, Kariniotakis G (2015) An edge model for the evaluation of wind power ramps characterization approaches. Wind Energy 18:1169–1184CrossRef
16.
Zurück zum Zitat Cutler NJ, Kay M, Jacka K, Nielsen TS (2007) Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT. Wind Energy 10:453–470CrossRef Cutler NJ, Kay M, Jacka K, Nielsen TS (2007) Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT. Wind Energy 10:453–470CrossRef
17.
Zurück zum Zitat Greaves B, Collins J, Parkes J, Tindal A (2009) Temporal forecast uncertainty for ramp events. Wind Energy 33(4):309–320 Greaves B, Collins J, Parkes J, Tindal A (2009) Temporal forecast uncertainty for ramp events. Wind Energy 33(4):309–320
18.
Zurück zum Zitat Gallego-Castillo C, García-Bustamante E, Cuerva-Tejero A, Navarro J (2015) Identifying wind power ramp causes from multivariate datasets: a methodological proposal and its application to reanalysis data. IET Renew Power Gener 9(8):867–875CrossRef Gallego-Castillo C, García-Bustamante E, Cuerva-Tejero A, Navarro J (2015) Identifying wind power ramp causes from multivariate datasets: a methodological proposal and its application to reanalysis data. IET Renew Power Gener 9(8):867–875CrossRef
19.
Zurück zum Zitat Rose S, Apt J (2016) Quantifying sources of uncertainty in reanalysis derived wind speed. Renew Energy 94:157–165CrossRef Rose S, Apt J (2016) Quantifying sources of uncertainty in reanalysis derived wind speed. Renew Energy 94:157–165CrossRef
20.
Zurück zum Zitat Olauson J (2018) ERA5: the new champion of wind power modelling? Renew Energy 126:322–331CrossRef Olauson J (2018) ERA5: the new champion of wind power modelling? Renew Energy 126:322–331CrossRef
21.
Zurück zum Zitat Cutler NJ, Outhred HR, MacGill IF, Kay MJ, Kepert JD (2009) Characterizing future large, rapid changes in aggregated wind power using numerical weather prediction spatial fields. Wind Energy 12(6):542–555CrossRef Cutler NJ, Outhred HR, MacGill IF, Kay MJ, Kepert JD (2009) Characterizing future large, rapid changes in aggregated wind power using numerical weather prediction spatial fields. Wind Energy 12(6):542–555CrossRef
22.
Zurück zum Zitat Salcedo-Sanz S, Pérez-Bellido ÁM, Ortiz-García EG, Portilla-Figueras A, Prieto L, Paredes D (2009) Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renew Energy 34(6):1451–1457CrossRef Salcedo-Sanz S, Pérez-Bellido ÁM, Ortiz-García EG, Portilla-Figueras A, Prieto L, Paredes D (2009) Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renew Energy 34(6):1451–1457CrossRef
23.
Zurück zum Zitat Cornejo-Bueno L, Jiménez-Fernández S, Acevedo-Rodríguez J, Prieto L, Cuadra L, Salcedo-Sanz S (2017) Wind power ramp events prediction with machine learning regression techniques. Energies 10(11):1784–1811CrossRef Cornejo-Bueno L, Jiménez-Fernández S, Acevedo-Rodríguez J, Prieto L, Cuadra L, Salcedo-Sanz S (2017) Wind power ramp events prediction with machine learning regression techniques. Energies 10(11):1784–1811CrossRef
24.
Zurück zum Zitat Dorado-Moreno M, Cornejo-Bueno L, Gutiérrez PA, Prieto L, Hervás-Martínez C, Salcedo-Sanz S (2017) Robust estimation of wind power ramp events with reservoir computing. Renew Energy 11:428–437CrossRef Dorado-Moreno M, Cornejo-Bueno L, Gutiérrez PA, Prieto L, Hervás-Martínez C, Salcedo-Sanz S (2017) Robust estimation of wind power ramp events with reservoir computing. Renew Energy 11:428–437CrossRef
25.
Zurück zum Zitat Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597CrossRef Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597CrossRef
26.
Zurück zum Zitat Salcedo-Sanz S, Cornejo-Bueno L, Prieto L, Paredes D, García-Herrera R (2018) Feature selection in machine learning prediction systems for renewable energy applications. Renew Sustain Energy Rev 90:728–741CrossRef Salcedo-Sanz S, Cornejo-Bueno L, Prieto L, Paredes D, García-Herrera R (2018) Feature selection in machine learning prediction systems for renewable energy applications. Renew Sustain Energy Rev 90:728–741CrossRef
27.
Zurück zum Zitat Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the 14th international conference on machine learning. Morgan Kaufmann, pp 179–186 Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the 14th international conference on machine learning. Morgan Kaufmann, pp 179–186
28.
Zurück zum Zitat Ling CX, Li C (1998) Data mining for direct marketing: problems and solutions. In: Proceedings of the 4th international conference on knowledge discovery and data mining. AAAI Press, pp 73–79 Ling CX, Li C (1998) Data mining for direct marketing: problems and solutions. In: Proceedings of the 4th international conference on knowledge discovery and data mining. AAAI Press, pp 73–79
29.
Zurück zum Zitat Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Int Res 16:321–357MATH Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Int Res 16:321–357MATH
30.
Zurück zum Zitat Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, BerlinCrossRef Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, BerlinCrossRef
31.
Zurück zum Zitat Salcedo-Sanz S, Prado-Cumplido M, Pérez-Cruz F, Bousoño-Calzón C (2002) Feature selection via genetic optimization. Int Conf Artif Neural Netw 2415:547–552MATH Salcedo-Sanz S, Prado-Cumplido M, Pérez-Cruz F, Bousoño-Calzón C (2002) Feature selection via genetic optimization. Int Conf Artif Neural Netw 2415:547–552MATH
32.
Zurück zum Zitat Pérez-Ortiz M, Jiménez-Fernndez S, Gutiérrez PA, Alexandre E, Hervás-Martnez C, Salcedo-Sanz Sancho (2016) A review of classification problems and algorithms in renewable energy applications. Energies 9:1–27CrossRef Pérez-Ortiz M, Jiménez-Fernndez S, Gutiérrez PA, Alexandre E, Hervás-Martnez C, Salcedo-Sanz Sancho (2016) A review of classification problems and algorithms in renewable energy applications. Energies 9:1–27CrossRef
33.
Zurück zum Zitat Huang GB, Zhu QY (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef Huang GB, Zhu QY (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef
34.
Zurück zum Zitat Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B 42(2):513–529CrossRef Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B 42(2):513–529CrossRef
36.
Zurück zum Zitat Vapnik VN (1998) Statistical learning theory. In: Haykin S (ed) Adaptive and learning systems for signal processing, communications and control. Wiley, Hoboken Vapnik VN (1998) Statistical learning theory. In: Haykin S (ed) Adaptive and learning systems for signal processing, communications and control. Wiley, Hoboken
37.
Zurück zum Zitat Hearst MA, Dumais ST, Osman E, Platt J, Schölkopf B (1998) Support vector machines. IEEE Intell Syst Appl 13:18–28CrossRef Hearst MA, Dumais ST, Osman E, Platt J, Schölkopf B (1998) Support vector machines. IEEE Intell Syst Appl 13:18–28CrossRef
38.
Zurück zum Zitat Salcedo-Sanz S, Rojo JL, Martínez-Ramón M, Camps-Valls G (2014) Support vector machines in engineering: an overview. WIREs Data Min Knowl Discov 4(3):234–267CrossRef Salcedo-Sanz S, Rojo JL, Martínez-Ramón M, Camps-Valls G (2014) Support vector machines in engineering: an overview. WIREs Data Min Knowl Discov 4(3):234–267CrossRef
39.
Zurück zum Zitat Tang Y, Guo W, Gao J (2009) Efficient model selection for support vector machine with Gaussian kernel function. In: Proceedings of the IEEE symposium on computational intelligence and data mining, pp 40–45 Tang Y, Guo W, Gao J (2009) Efficient model selection for support vector machine with Gaussian kernel function. In: Proceedings of the IEEE symposium on computational intelligence and data mining, pp 40–45
40.
Zurück zum Zitat Scholkopf B, Sung K, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45:2758–2765CrossRef Scholkopf B, Sung K, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45:2758–2765CrossRef
41.
Zurück zum Zitat Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27CrossRef Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27CrossRef
Metadaten
Titel
Wind power ramp event detection with a hybrid neuro-evolutionary approach
verfasst von
L. Cornejo-Bueno
C. Camacho-Gómez
A. Aybar-Ruiz
L. Prieto
A. Barea-Ropero
S. Salcedo-Sanz
Publikationsdatum
12.11.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 2/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3707-7

Weitere Artikel der Ausgabe 2/2020

Neural Computing and Applications 2/2020 Zur Ausgabe

IWANN2017: Learning algorithms with real world applications

Pooling spike neural network for fast rendering in global illumination

S.I. : IWANN2017: Learning algorithms with real world applications

State estimation of zinc air batteries using neural networks

Premium Partner