Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.01.2020 | Methodologies and Application | Ausgabe 16/2020

Soft Computing 16/2020

Wireless sensor network intrusion detection system based on MK-ELM

Zeitschrift:
Soft Computing > Ausgabe 16/2020
Autoren:
Wenjie Zhang, Dezhi Han, Kuan-Ching Li, Francisco Isidro Massetto
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Advances in digital electronics, wireless communications, and electro-mechanical systems technology have revolutionized the society and economy across the globe by enabling the development of low-cost, low-power, and multi-functional sensor nodes, from which the sensor networks are realized by leveraging the features of sensing, data processing, and communication present in these nodes. Though the energy of the wireless sensor network (WSN) nodes is limited, the detection of existing intrusion detection systems in WSN is weakly accurate further. To reduce the energy consumption of nodes in WSNs during detection processing, we propose a hierarchical intrusion detection model that clusters the nodes in a WSN according to their functions. Even more, to improve the detection accuracy of abnormal behavior of the WSN intrusion detection system and reduce the false alarm rate, it is considered in this research the usage of the classification algorithm of kernel extreme learning machine, following to Mercer Property to synthesize multi-kernel functions. We realize the optimal linear combination by testing and applying the multi-kernel function and build a multi-kernel extreme learning machine to WSN intrusion detection systems. Simulation results show that the system not only guarantees a high detection accuracy but also dramatically reduces the detection time, being well suited for resource-constrained WSNs.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 16/2020

Soft Computing 16/2020 Zur Ausgabe

Premium Partner

    Bildnachweise