Skip to main content
Erschienen in: Journal of Materials Science 20/2018

13.07.2018 | Energy materials

ZnS nanoparticles coated with graphene-like nano-cell as anode materials for high rate capability lithium-ion batteries

verfasst von: Huiwei Du, Xuchun Gui, Rongliang Yang, Hao Zhang, Zhiqiang Lin, Binghao Liang, Wenjun Chen, Hai Zhu, Jun Chen

Erschienen in: Journal of Materials Science | Ausgabe 20/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A core–shell structure ZnS nanocomposite was synthesized by wrapping ZnS nanoparticles up in graphene-like nano-cell (GLC@ZnS) through chemical vapor deposition. The morphological and structural characteristics exhibit that the obtained GLC@ZnS composite possesses high-quality ZnS nano-sized particles and laminated graphene-like layers shell. When applied as anode materials for lithium-ion batteries, the GLC@ZnS composite (high ZnS content of 97.2%) with diameter of 30 nm delivers high reversible capacities (1134 mAh g−1 after 100 cycles at 0.5 A g−1, 890 mAh g−1 after 200 cycles at 1.0 A g−1) and excellent rate capability (701 mAh g−1 at 8.0 A g−1). The excellent electrochemical performance of the composite is ascribed to the inclosed graphene-like nano-cell, which could localize the active materials and enhance the exchange of charges and ions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Megahed S, Ebner W (1995) Lithium-ion battery for electronic applications. J Power Sources 54:155–162CrossRef Megahed S, Ebner W (1995) Lithium-ion battery for electronic applications. J Power Sources 54:155–162CrossRef
2.
Zurück zum Zitat Erickson EM, Ghanty C, Aurbach D (2014) New horizons for conventional lithium ion battery technology. J Phys Chem Lett 5:3313–3324CrossRef Erickson EM, Ghanty C, Aurbach D (2014) New horizons for conventional lithium ion battery technology. J Phys Chem Lett 5:3313–3324CrossRef
3.
Zurück zum Zitat Jusef Hassoun J, Scrosati B (2015) Review—advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries. J Electrochem Soc 162:A2582–A2588CrossRef Jusef Hassoun J, Scrosati B (2015) Review—advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries. J Electrochem Soc 162:A2582–A2588CrossRef
4.
Zurück zum Zitat Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur. Renew Sustain Energy Rev 56:1008–1021CrossRef Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur. Renew Sustain Energy Rev 56:1008–1021CrossRef
5.
Zurück zum Zitat Bruen T, Marco J (2016) Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. J Power Sources 310:91–101CrossRef Bruen T, Marco J (2016) Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. J Power Sources 310:91–101CrossRef
6.
Zurück zum Zitat Li NW, Yin YX, Li JY, Zhang CH, Guo YG (2017) Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable li plating/stripping. Adv Sci 4:1600400CrossRef Li NW, Yin YX, Li JY, Zhang CH, Guo YG (2017) Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable li plating/stripping. Adv Sci 4:1600400CrossRef
7.
Zurück zum Zitat Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7:1700530CrossRef Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7:1700530CrossRef
8.
Zurück zum Zitat Yuan T, Jiang Y, Sun W, Xiang B, Li Y, Yan M, Xu B, Dou S (2016) Ever-increasing pseudocapacitance in RGO–MnO–RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Func Mater 26:2198–2206CrossRef Yuan T, Jiang Y, Sun W, Xiang B, Li Y, Yan M, Xu B, Dou S (2016) Ever-increasing pseudocapacitance in RGO–MnO–RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Func Mater 26:2198–2206CrossRef
9.
Zurück zum Zitat Liu D, Liu D, Hou B, Wang Y, Guo J, Ning Q, Wu X-L (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRef Liu D, Liu D, Hou B, Wang Y, Guo J, Ning Q, Wu X-L (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRef
10.
Zurück zum Zitat Tomita Y, Kimura N, Nasu H, Izumi Y, Arai J, Yamane Y, Yamada K, Kohno Y, Kobayashi K (2017) Effects of Li-doped NiO on the charge–discharge properties of LiF–NiO composites used as cathode materials for Li-ion batteries. J Appl Electrochem 47:1057–1063CrossRef Tomita Y, Kimura N, Nasu H, Izumi Y, Arai J, Yamane Y, Yamada K, Kohno Y, Kobayashi K (2017) Effects of Li-doped NiO on the charge–discharge properties of LiF–NiO composites used as cathode materials for Li-ion batteries. J Appl Electrochem 47:1057–1063CrossRef
11.
Zurück zum Zitat Iturrondobeitia A, Goni A, Gil I, de Muro L, Lezama T Rojo (2017) Physico-chemical and electrochemical properties of nanoparticulate NiO/C composites for high performance lithium and sodium ion battery anodes. Nanomaterials 7:423CrossRef Iturrondobeitia A, Goni A, Gil I, de Muro L, Lezama T Rojo (2017) Physico-chemical and electrochemical properties of nanoparticulate NiO/C composites for high performance lithium and sodium ion battery anodes. Nanomaterials 7:423CrossRef
12.
Zurück zum Zitat Li L, Kovalchuk A, Fei H et al (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171CrossRef Li L, Kovalchuk A, Fei H et al (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171CrossRef
13.
Zurück zum Zitat Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F (2015) Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7:9709–9715CrossRef Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F (2015) Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7:9709–9715CrossRef
14.
Zurück zum Zitat Zhang H, Wang Y, Zhao W, Zou M, Chen Y, Yang L, Xu L, Wu H, Cao A (2017) MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl Mater Interfaces 9:37813–37822CrossRef Zhang H, Wang Y, Zhao W, Zou M, Chen Y, Yang L, Xu L, Wu H, Cao A (2017) MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl Mater Interfaces 9:37813–37822CrossRef
16.
Zurück zum Zitat Wang DL, Yu YC, He H, Wang J, Zhou WD, Abruna HD (2015) Template-free synthesis of hollow structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9:1775–1781CrossRef Wang DL, Yu YC, He H, Wang J, Zhou WD, Abruna HD (2015) Template-free synthesis of hollow structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9:1775–1781CrossRef
17.
Zurück zum Zitat Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Func Mater 26:1428–1436CrossRef Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Func Mater 26:1428–1436CrossRef
19.
Zurück zum Zitat Wang J, Wu J, Wu Z, Han L, Huang T, Xin HL, Wang D (2017) High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochim Acta 244:8–15CrossRef Wang J, Wu J, Wu Z, Han L, Huang T, Xin HL, Wang D (2017) High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochim Acta 244:8–15CrossRef
20.
Zurück zum Zitat Ni SB, Yang XL, Li T (2012) Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery. J Mater Chem 22:2395–2397CrossRef Ni SB, Yang XL, Li T (2012) Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery. J Mater Chem 22:2395–2397CrossRef
21.
Zurück zum Zitat Zhang Z, Zhao H, Zeng Z, Gao C, Wang J, Xia Q (2015) Hierarchical architectured NiS@SiO2 nanoparticles enveloped in graphene sheets as anode material for lithium ion batteries. Electrochim Acta 155:85–92CrossRef Zhang Z, Zhao H, Zeng Z, Gao C, Wang J, Xia Q (2015) Hierarchical architectured NiS@SiO2 nanoparticles enveloped in graphene sheets as anode material for lithium ion batteries. Electrochim Acta 155:85–92CrossRef
22.
Zurück zum Zitat Wang X, Liu X, Wang G, Zhou Y, Wang H (2017) General formation of three-dimensional (3D) interconnected MxSy (M = Ni, Zn, and Fe)-graphene nanosheets-carbon nanotubes aerogels for lithium-ion batteries with excellent rate capability and cycling stability. J Power Sources 342:105–115CrossRef Wang X, Liu X, Wang G, Zhou Y, Wang H (2017) General formation of three-dimensional (3D) interconnected MxSy (M = Ni, Zn, and Fe)-graphene nanosheets-carbon nanotubes aerogels for lithium-ion batteries with excellent rate capability and cycling stability. J Power Sources 342:105–115CrossRef
24.
Zurück zum Zitat Wu Z, Li J, Zhong Y, Liu J, Wang K, Guo X, Huang L, Zhong B, Sun S (2016) Synthesis of FeS@C–N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J Alloy Compd 688:790–797CrossRef Wu Z, Li J, Zhong Y, Liu J, Wang K, Guo X, Huang L, Zhong B, Sun S (2016) Synthesis of FeS@C–N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J Alloy Compd 688:790–797CrossRef
25.
Zurück zum Zitat He L, Liao X, Yang K, He Y, Wen W, Ma Z (2011) Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries. Electrochim Acta 56:1213–1218CrossRef He L, Liao X, Yang K, He Y, Wen W, Ma Z (2011) Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries. Electrochim Acta 56:1213–1218CrossRef
26.
Zurück zum Zitat Qin W, Li D, Zhang X, Yan D, Hu B, Pan L (2016) ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries. Electrochim Acta 191:435–443CrossRef Qin W, Li D, Zhang X, Yan D, Hu B, Pan L (2016) ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries. Electrochim Acta 191:435–443CrossRef
27.
Zurück zum Zitat Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528–537CrossRef Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528–537CrossRef
28.
Zurück zum Zitat Geng H, Yang J, Dai Z et al (2017) Co9S8/MoS2 yolk-shell spheres for advanced Li/Na storage. Small 13:1603490CrossRef Geng H, Yang J, Dai Z et al (2017) Co9S8/MoS2 yolk-shell spheres for advanced Li/Na storage. Small 13:1603490CrossRef
29.
Zurück zum Zitat Yu DJ, Yuan YF, Zhang D, Yin SM, Lin JX, Rong Z, Yang JL, Chen YB, Guo SY (2016) Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries. Electrochim Acta 198:280–286CrossRef Yu DJ, Yuan YF, Zhang D, Yin SM, Lin JX, Rong Z, Yang JL, Chen YB, Guo SY (2016) Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries. Electrochim Acta 198:280–286CrossRef
30.
Zurück zum Zitat Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057CrossRef Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057CrossRef
31.
Zurück zum Zitat Su D, Kretschmer K, Wang G (2016) Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv Energy Mater 6:1501785CrossRef Su D, Kretschmer K, Wang G (2016) Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv Energy Mater 6:1501785CrossRef
32.
Zurück zum Zitat Jiabao Li DY, Zhang Xiaojie, Hou Shujin, Ting Lu, Yao Yefeng, Pan Likun (2017) ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 5:20428–20438CrossRef Jiabao Li DY, Zhang Xiaojie, Hou Shujin, Ting Lu, Yao Yefeng, Pan Likun (2017) ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 5:20428–20438CrossRef
33.
Zurück zum Zitat Du X, Zhao H, Lu Y, Zhang Z, Kulka A, Świerczek K (2017) Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim Acta 228:100–106CrossRef Du X, Zhao H, Lu Y, Zhang Z, Kulka A, Świerczek K (2017) Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim Acta 228:100–106CrossRef
34.
Zurück zum Zitat Du X, Zhao H, Zhang Z, Lu Y, Gao C, Li Z, Teng Y, Zhao L, Świerczek K (2017) Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim Acta 225:129–136CrossRef Du X, Zhao H, Zhang Z, Lu Y, Gao C, Li Z, Teng Y, Zhao L, Świerczek K (2017) Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim Acta 225:129–136CrossRef
35.
Zurück zum Zitat Li NW, Yin YX, Xin S, Li JY, Guo YG (2017) Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 1:1700094CrossRef Li NW, Yin YX, Xin S, Li JY, Guo YG (2017) Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 1:1700094CrossRef
36.
Zurück zum Zitat Du H, Gui X, Yang R, Lin Z, Liang B, Chen W, Zheng Y, Zhu H, Chen J (2018) In situ sulfur loading in graphene-like nano-cell by template-free method for Li-S batteries. Nanoscale 10:3877–3883CrossRef Du H, Gui X, Yang R, Lin Z, Liang B, Chen W, Zheng Y, Zhu H, Chen J (2018) In situ sulfur loading in graphene-like nano-cell by template-free method for Li-S batteries. Nanoscale 10:3877–3883CrossRef
37.
Zurück zum Zitat Wang J, Zhang Z, Zhang X, Yin X, Li X, Liu X, Kang F, Wei B (2017) Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39:647–653CrossRef Wang J, Zhang Z, Zhang X, Yin X, Li X, Liu X, Kang F, Wei B (2017) Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39:647–653CrossRef
38.
Zurück zum Zitat Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef
39.
Zurück zum Zitat Qiu Y, Li W, Zhao W et al (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827CrossRef Qiu Y, Li W, Zhao W et al (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827CrossRef
40.
Zurück zum Zitat Fu Y, Zhang ZA, Yang X, Gan YQ, Chen W (2015) ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv 5:86941–86944CrossRef Fu Y, Zhang ZA, Yang X, Gan YQ, Chen W (2015) ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv 5:86941–86944CrossRef
41.
Zurück zum Zitat Ma J, Wang X, Wang H, Wang G, Ma S (2018) Hollow ZnS submicrospheres encapsulated in carbon shells with enhanced lithium and sodium storage properties. J Alloy Compd 735:51–61CrossRef Ma J, Wang X, Wang H, Wang G, Ma S (2018) Hollow ZnS submicrospheres encapsulated in carbon shells with enhanced lithium and sodium storage properties. J Alloy Compd 735:51–61CrossRef
42.
Zurück zum Zitat Park GD, Choi SH, Lee JK, Kang YC (2014) One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries. Chem A Eur J 20:12183–12189CrossRef Park GD, Choi SH, Lee JK, Kang YC (2014) One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries. Chem A Eur J 20:12183–12189CrossRef
43.
Zurück zum Zitat Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634CrossRef Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634CrossRef
Metadaten
Titel
ZnS nanoparticles coated with graphene-like nano-cell as anode materials for high rate capability lithium-ion batteries
verfasst von
Huiwei Du
Xuchun Gui
Rongliang Yang
Hao Zhang
Zhiqiang Lin
Binghao Liang
Wenjun Chen
Hai Zhu
Jun Chen
Publikationsdatum
13.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2674-9

Weitere Artikel der Ausgabe 20/2018

Journal of Materials Science 20/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.