Skip to main content
Erschienen in: Engineering with Computers 4/2023

27.04.2022 | Original Article

A cascadic multilevel optimization framework for the concurrent design of the fiber-reinforced composite structure through the NURBS surface

verfasst von: Haoqing Ding, Bin Xu, Zunyi Duan, Weibai Li, Xiaodong Huang

Erschienen in: Engineering with Computers | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a novel cascadic multilevel optimization framework for the fiber-reinforced composite structure, inspired by the character of the non-uniform rational basis spline (NURBS) surface, to control the structural topology, fiber angle distribution, and to improve the computational efficiency. The NURBS surface is not only used for the calculation of the structural response and the geometry modeling of the design but also introduced to construct the hierarchy of the parameterization of design variables. The optimization problem is formulated and solved successively from a coarse mesh level to the finest mesh level. The initial design of a fine level is computed using the solution of a coarse level. The number of meshes and design variables is gradually increased, and the design freedom and the resolution of parameterization remain the same to the optimization at the finest mesh level. Because there are fewer design variables and meshes at the coarse level and the finest level is used to find an accurate solution, it efficiently reduces the computational cost of the optimization. Meanwhile, the local support character of the NURBS surface avoids the checkerboard phenomenon and improves the continuity of local fiber angle. Several numerical examples for compliance minimization are presented to verify the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The coc algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336 Zhou M, Rozvany GIN (1991) The coc algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336
2.
Zurück zum Zitat Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654MATH Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654MATH
3.
Zurück zum Zitat Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528MathSciNetMATH Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528MathSciNetMATH
4.
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetMATH
5.
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetMATH Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetMATH
6.
Zurück zum Zitat Huang X, Xie M (2010) Evolutionary topology optimization of continuum structures: methods and applications. WileyMATH Huang X, Xie M (2010) Evolutionary topology optimization of continuum structures: methods and applications. WileyMATH
7.
Zurück zum Zitat Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components-based framework. J Appl Mech Trans ASME 81:081009 Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components-based framework. J Appl Mech Trans ASME 81:081009
8.
Zurück zum Zitat Zhang WS, Li D, Zhou JH, Du ZL, Li BJ, Guo X (2018) A moving morphable void (mmv)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413MathSciNetMATH Zhang WS, Li D, Zhou JH, Du ZL, Li BJ, Guo X (2018) A moving morphable void (mmv)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413MathSciNetMATH
9.
Zurück zum Zitat van de Werken N, Hurley J, Khanbolouki P, Sarvestani AN, Tamijani AY, Tehrani M (2019) Design considerations and modeling of fiber reinforced 3D printed parts. Compos B Eng 160:684–692 van de Werken N, Hurley J, Khanbolouki P, Sarvestani AN, Tamijani AY, Tehrani M (2019) Design considerations and modeling of fiber reinforced 3D printed parts. Compos B Eng 160:684–692
10.
Zurück zum Zitat Nikbakt S, Kamarian S, Shakeri M (2018) A review on optimization of composite structures part I: laminated composites. Compos Struct 195:158–185 Nikbakt S, Kamarian S, Shakeri M (2018) A review on optimization of composite structures part I: laminated composites. Compos Struct 195:158–185
11.
Zurück zum Zitat Montemurro M, Catapano A (2019) A general B-Spline surfaces theoretical framework for optimisation of variable angle-tow laminates. Compos Struct 209:561–578 Montemurro M, Catapano A (2019) A general B-Spline surfaces theoretical framework for optimisation of variable angle-tow laminates. Compos Struct 209:561–578
12.
Zurück zum Zitat Montemurro M, Catapano A (2017) On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos Struct 161:145–159 Montemurro M, Catapano A (2017) On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos Struct 161:145–159
13.
Zurück zum Zitat Fiordilino GA, Izzi MI, Montemurro M (2020) A general isogeometric polar approach for the optimisation of variable stiffness composites: application to eigenvalue buckling problems. Mech Mater 153:103574 Fiordilino GA, Izzi MI, Montemurro M (2020) A general isogeometric polar approach for the optimisation of variable stiffness composites: application to eigenvalue buckling problems. Mech Mater 153:103574
14.
Zurück zum Zitat Izzi MI, Montemurro M, Catapano A, Pailhès J (2020) A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures. Compos Struct 237:111908 Izzi MI, Montemurro M, Catapano A, Pailhès J (2020) A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures. Compos Struct 237:111908
15.
Zurück zum Zitat Montemurro M, Catapano A (2016) A new paradigm for the optimum design of variable angle tow laminates. SpringerMATH Montemurro M, Catapano A (2016) A new paradigm for the optimum design of variable angle tow laminates. SpringerMATH
16.
Zurück zum Zitat Scardaoni MP, Montemurro M (2020) Convex or non-convex? On the nature of the feasible domain of laminates. Eur J Mech A Solid 85:104112MathSciNetMATH Scardaoni MP, Montemurro M (2020) Convex or non-convex? On the nature of the feasible domain of laminates. Eur J Mech A Solid 85:104112MathSciNetMATH
17.
Zurück zum Zitat Izzi MI, Catapano A, Montemurro M (2021) Strength and mass optimisation of variable-stiffness composites in the polar parameters space. Struct Multidiscip Optim 64:2045–2073MathSciNet Izzi MI, Catapano A, Montemurro M (2021) Strength and mass optimisation of variable-stiffness composites in the polar parameters space. Struct Multidiscip Optim 64:2045–2073MathSciNet
18.
Zurück zum Zitat Catapano A, Montemurro M (2020) Strength optimisation of variable angle-tow composites through a laminate-level failure criterion. J Optim Theory Appl 187:683–706MathSciNetMATH Catapano A, Montemurro M (2020) Strength optimisation of variable angle-tow composites through a laminate-level failure criterion. J Optim Theory Appl 187:683–706MathSciNetMATH
19.
Zurück zum Zitat Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos Struct 90:1–11 Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos Struct 90:1–11
20.
Zurück zum Zitat Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials part II: variable stiffness design. Compos Struct 93:1–13 Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials part II: variable stiffness design. Compos Struct 93:1–13
21.
Zurück zum Zitat Xia Q, Shi TL (2017) Optimization of composite structures with continuous spatial variation of fiber angle through shepard interpolation. Compos Struct 182:273–282 Xia Q, Shi TL (2017) Optimization of composite structures with continuous spatial variation of fiber angle through shepard interpolation. Compos Struct 182:273–282
22.
Zurück zum Zitat Tian Y, Pu S, Zong Z, Xia Q (2019) Optimization of variable stiffness laminates with gap-overlap and curvature constraints. Compos Struct 230:111494 Tian Y, Pu S, Zong Z, Xia Q (2019) Optimization of variable stiffness laminates with gap-overlap and curvature constraints. Compos Struct 230:111494
23.
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027MATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027MATH
24.
Zurück zum Zitat Tian Y, Pu S, Shi T, Xia Q (2021) A parametric divergence-free vector field method for the optimization of composite structures with curvilinear fibers. Comput Methods Appl Mech Eng 373:113574MathSciNetMATH Tian Y, Pu S, Shi T, Xia Q (2021) A parametric divergence-free vector field method for the optimization of composite structures with curvilinear fibers. Comput Methods Appl Mech Eng 373:113574MathSciNetMATH
25.
Zurück zum Zitat Brampton CJ, Wu KC, Kim HA (2015) New optimization method for steered fiber composites using the level set method. Struct Multidiscip Optim 52:493–505MathSciNet Brampton CJ, Wu KC, Kim HA (2015) New optimization method for steered fiber composites using the level set method. Struct Multidiscip Optim 52:493–505MathSciNet
26.
Zurück zum Zitat Papapetrou VS, Patel C, Tamijani AY (2020) Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites. Compos B 183:107681 Papapetrou VS, Patel C, Tamijani AY (2020) Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites. Compos B 183:107681
27.
Zurück zum Zitat Xia ZH, Wang YJ, Wang QF, Mei C (2017) Gpu parallel strategy for parameterized lsm-based topology optimization using isogeometric analysis. Struct Multidiscip Optim 56:413–434MathSciNet Xia ZH, Wang YJ, Wang QF, Mei C (2017) Gpu parallel strategy for parameterized lsm-based topology optimization using isogeometric analysis. Struct Multidiscip Optim 56:413–434MathSciNet
28.
Zurück zum Zitat Li WC, Suryanarayana P, Paulino GH (2020) Accelerated fixed-point formulation of topology optimization: application to compliance minimization problems. Mech Res Commun 103:103469 Li WC, Suryanarayana P, Paulino GH (2020) Accelerated fixed-point formulation of topology optimization: application to compliance minimization problems. Mech Res Commun 103:103469
29.
Zurück zum Zitat Liao ZY, Zhang Y, Wang YJ, Li W (2019) A triple acceleration method for topology optimization. Struct Multidiscip Optim 60(2):727–744MathSciNet Liao ZY, Zhang Y, Wang YJ, Li W (2019) A triple acceleration method for topology optimization. Struct Multidiscip Optim 60(2):727–744MathSciNet
30.
Zurück zum Zitat Ding H, Xu B (2021) A novel discrete-continuous material orientation optimization model for stiffness-based concurrent design of fiber composite. Compos Struct 273:114288 Ding H, Xu B (2021) A novel discrete-continuous material orientation optimization model for stiffness-based concurrent design of fiber composite. Compos Struct 273:114288
31.
Zurück zum Zitat Xia Q, Shi T (2018) A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on Shepard interpolation. Compos Struct 188:209–219 Xia Q, Shi T (2018) A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on Shepard interpolation. Compos Struct 188:209–219
32.
Zurück zum Zitat Shi S, Zhou P, Lü Z (2021) A density-based topology optimization method using radial basis function and its design variable reduction. Struct Multidiscip Optim 64:2149–2163MathSciNet Shi S, Zhou P, Lü Z (2021) A density-based topology optimization method using radial basis function and its design variable reduction. Struct Multidiscip Optim 64:2149–2163MathSciNet
33.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetMATH
34.
Zurück zum Zitat Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116MathSciNetMATH Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116MathSciNetMATH
35.
Zurück zum Zitat Gao J, Xiao M, Zhang Y,Gao L.(2020)A comprehensive review of isogeometric topology optimization: methods, applications and prospects.Chin J Mech Eng 33:87 Gao J, Xiao M, Zhang Y,Gao L.(2020)A comprehensive review of isogeometric topology optimization: methods, applications and prospects.Chin J Mech Eng 33:87
36.
Zurück zum Zitat Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199:3270–3296MathSciNetMATH Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199:3270–3296MathSciNetMATH
37.
Zurück zum Zitat Gao J, Gao L, Luo Z, Li P (2019) Isogeometric topology optimization for continuum structures using density distribution function. Int J Numer Methods Eng 119:991–1017MathSciNet Gao J, Gao L, Luo Z, Li P (2019) Isogeometric topology optimization for continuum structures using density distribution function. Int J Numer Methods Eng 119:991–1017MathSciNet
38.
Zurück zum Zitat Gao J, Xue H, Gao L, Luo Z (2019) Topology optimization for auxetic metamaterials based on isogeometric analysis. Comput Methods Appl Mech Eng 352:211–236MathSciNetMATH Gao J, Xue H, Gao L, Luo Z (2019) Topology optimization for auxetic metamaterials based on isogeometric analysis. Comput Methods Appl Mech Eng 352:211–236MathSciNetMATH
39.
Zurück zum Zitat Gao J, Luo Z, Xiao M, Gao L, Li P (2020) A NURBS-based multi-material interpolation (N-MMI) for isogeometric topology optimization of structures. Appl Math Model 81:818–843MathSciNetMATH Gao J, Luo Z, Xiao M, Gao L, Li P (2020) A NURBS-based multi-material interpolation (N-MMI) for isogeometric topology optimization of structures. Appl Math Model 81:818–843MathSciNetMATH
40.
Zurück zum Zitat Roiné T, Montemurro M, Pailhès J (2021) Stress-based topology optimization through non-uniform rational basis spline hyper-surfaces. Mech Adv Mater Struct 1:1–29 Roiné T, Montemurro M, Pailhès J (2021) Stress-based topology optimization through non-uniform rational basis spline hyper-surfaces. Mech Adv Mater Struct 1:1–29
41.
Zurück zum Zitat Costa G, Montemurro M, Pailhes J (2019) Minimum length scale control in a NURBS-based SIMP method. Comput Methods Appl Mech Eng 354:963–989MathSciNetMATH Costa G, Montemurro M, Pailhes J (2019) Minimum length scale control in a NURBS-based SIMP method. Comput Methods Appl Mech Eng 354:963–989MathSciNetMATH
42.
Zurück zum Zitat Tavakkoli S, Mehdi S (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257MathSciNetMATH Tavakkoli S, Mehdi S (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257MathSciNetMATH
43.
Zurück zum Zitat Hao P, Yuan X, Liu C, Wang B, Liu H, Li G (2018) An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels. Comput Methods Appl Mech Eng 339:205–238MathSciNetMATH Hao P, Yuan X, Liu C, Wang B, Liu H, Li G (2018) An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels. Comput Methods Appl Mech Eng 339:205–238MathSciNetMATH
44.
Zurück zum Zitat Costa G, Montemurro M, Pailhès J (2021) NURBS hypersurfaces for 3D topology optimisation problems. Mechanics of advanced materials and structures. Mech Adv Mater Struct 28(7):665–684 Costa G, Montemurro M, Pailhès J (2021) NURBS hypersurfaces for 3D topology optimisation problems. Mechanics of advanced materials and structures. Mech Adv Mater Struct 28(7):665–684
45.
Zurück zum Zitat Montemurro M, Bertolino G, Roiné T (2021) A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology. Compos Struct 258:113360 Montemurro M, Bertolino G, Roiné T (2021) A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology. Compos Struct 258:113360
46.
Zurück zum Zitat Bertolino G, Montemurro M (2021) Two-scale topology optimisation of cellular materials under mixed boundary conditions. Int J Mech Sci 216:106961 Bertolino G, Montemurro M (2021) Two-scale topology optimisation of cellular materials under mixed boundary conditions. Int J Mech Sci 216:106961
47.
Zurück zum Zitat Montemurro M, Refai K, Catapano A (2022) Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method. Compos Struct 280:114862 Montemurro M, Refai K, Catapano A (2022) Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method. Compos Struct 280:114862
48.
Zurück zum Zitat Liu H, Yang D, Hao P, Zhu X (2018) Isogeometric analysis based topology optimization design with global stress constraint. Comput Methods Appl Mech Eng 342:625–652MathSciNetMATH Liu H, Yang D, Hao P, Zhu X (2018) Isogeometric analysis based topology optimization design with global stress constraint. Comput Methods Appl Mech Eng 342:625–652MathSciNetMATH
50.
Zurück zum Zitat Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573MathSciNetMATH Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573MathSciNetMATH
51.
Zurück zum Zitat Wang Y, Benson DJ (2016) Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 57:19–35MathSciNetMATH Wang Y, Benson DJ (2016) Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 57:19–35MathSciNetMATH
Metadaten
Titel
A cascadic multilevel optimization framework for the concurrent design of the fiber-reinforced composite structure through the NURBS surface
verfasst von
Haoqing Ding
Bin Xu
Zunyi Duan
Weibai Li
Xiaodong Huang
Publikationsdatum
27.04.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2023
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01639-0

Weitere Artikel der Ausgabe 4/2023

Engineering with Computers 4/2023 Zur Ausgabe

Neuer Inhalt