Skip to main content
Erschienen in: The Journal of Supercomputing 6/2021

18.11.2020

A cluster-tree-based energy-efficient routing protocol for wireless sensor networks with a mobile sink

verfasst von: JiaYu Lu, KongFa Hu, XiChen Yang, ChenJun Hu, TianShu Wang

Erschienen in: The Journal of Supercomputing | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid development of the Internet of Things technology, wireless sensor networks as the core technique have been applied in military, precision agriculture, security monitoring, intelligent traffic, instrument monitoring and so on. In wireless sensor networks with mobile sinks, the sensor nodes have limited energy supply and the sink is removable. To improve the network efficiency and the sink utilization, we present a cluster tree-based energy-efficient routing protocol (CTEER). The protocol is based on rendezvous which is capable of reducing the latency. CTEER firstly plans the mobile path for the sink and creates a cross-communication region. Then, a cross-routing tree with the mobile sink as the center is constructed within the region. The routing tree changes with the location of the sink in each round so that the utilization rate of sensor nodes can be improved. Meanwhile, we divide the ordinary nodes outside the cross-region into multiple clusters. The ordinary nodes can send data to the routing tree directly through the cluster heads. In this way, transmission hops from ordinary nodes to the routing tree can be decreased. Thus, the data latency can be reduced. Experimental results show that CTEER protocol keeps competitive in terms of energy saving, network lifetime and data latency reduction. In four experimental environments, compared with RRP, the total energy consumption of nodes in each round in CTEER is decreased by 77.58%, 62.03%, 57.01% and 50.95%, respectively. In three experimental environments, compared with FRM, the total energy consumption of nodes in each round in CTEER is reduced by 35.04%, 29.93% and 4.08%, respectively. Compared with RRP, the total hops of sensor nodes in each round in CTEER are reduced by 82.44%, 75.56%, 74.16% and 78.04%, respectively. Compared with FRM, the hops are decreased by 43.25%, 40.19%, 39.10% and 39.64%, respectively. Considering the low delay advantage, CTTEER is suitable for time-sensitive applications. Some examples of the applications would be target tracking, telemonitoring of human health status and artificial intelligence applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sheth A, Jaimini U, Yip HY (2018) How will the internet of things enable augmented personalized health? IEEE Intell Syst 33(1):89–97CrossRef Sheth A, Jaimini U, Yip HY (2018) How will the internet of things enable augmented personalized health? IEEE Intell Syst 33(1):89–97CrossRef
2.
Zurück zum Zitat Ahmadreza V, Gongxuan Z, Junlong Z et al (2018) A new path-constrained rendezvous planning approach for large-scale event-driven wireless sensor networks. Sensors (Basel) 18(5):1434CrossRef Ahmadreza V, Gongxuan Z, Junlong Z et al (2018) A new path-constrained rendezvous planning approach for large-scale event-driven wireless sensor networks. Sensors (Basel) 18(5):1434CrossRef
3.
Zurück zum Zitat Hou YT, Shi Y, Sherali HD et al (2005) On energy provisioning and relay node placement for wireless sensor networks. IEEE Trans Wireless Commun 4(5):2579–2590CrossRef Hou YT, Shi Y, Sherali HD et al (2005) On energy provisioning and relay node placement for wireless sensor networks. IEEE Trans Wireless Commun 4(5):2579–2590CrossRef
4.
Zurück zum Zitat Li J, Mohapatra P (2006) An analytical model for the energy hole problem in many-to-one sensor networks. In: IEEE Vehicular Technology Conference Li J, Mohapatra P (2006) An analytical model for the energy hole problem in many-to-one sensor networks. In: IEEE Vehicular Technology Conference
5.
Zurück zum Zitat Song L, Hatzinakos D (2007) Architecture of wireless sensor networks with mobile sinks: sparsely deployed sensors. IEEE Trans Veh Technol 56(4):1826–1836CrossRef Song L, Hatzinakos D (2007) Architecture of wireless sensor networks with mobile sinks: sparsely deployed sensors. IEEE Trans Veh Technol 56(4):1826–1836CrossRef
6.
Zurück zum Zitat Liu Z, Qiu Z (2007) A local non uniform data collection scheme for mobile user in wireless sensor networks. In: IET Conference on Wireless, Mobile and Sensor Networks 2007 (CCWMSN07), pp 612–615 Liu Z, Qiu Z (2007) A local non uniform data collection scheme for mobile user in wireless sensor networks. In: IET Conference on Wireless, Mobile and Sensor Networks 2007 (CCWMSN07), pp 612–615
7.
Zurück zum Zitat Gatzianas M, Georgiadis L (2008) A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink. IEEE Trans Wireless Commun 7(3):984–994CrossRef Gatzianas M, Georgiadis L (2008) A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink. IEEE Trans Wireless Commun 7(3):984–994CrossRef
8.
Zurück zum Zitat Gu Y, Ji Y, Li J et al (2013) ESWC: efficient scheduling for the mobile sink in wireless sensor networks with delay constraint. IEEE Trans Parallel Distrib Syst 24(7):1310–1320CrossRef Gu Y, Ji Y, Li J et al (2013) ESWC: efficient scheduling for the mobile sink in wireless sensor networks with delay constraint. IEEE Trans Parallel Distrib Syst 24(7):1310–1320CrossRef
9.
Zurück zum Zitat Zhu C, Shuai WU, Han G et al (2015) A tree-cluster-based data-gathering algorithm for industrial WSNS with a mobile sink. IEEE Access 3:381–396CrossRef Zhu C, Shuai WU, Han G et al (2015) A tree-cluster-based data-gathering algorithm for industrial WSNS with a mobile sink. IEEE Access 3:381–396CrossRef
10.
Zurück zum Zitat Chang JY, Shen TH (2016) An efficient tree-based power saving scheme for wireless sensor networks with mobile sink. IEEE Sens J 16(20):7545–7557CrossRef Chang JY, Shen TH (2016) An efficient tree-based power saving scheme for wireless sensor networks with mobile sink. IEEE Sens J 16(20):7545–7557CrossRef
11.
Zurück zum Zitat Sharma S, Puthal D, Jena SK et al (2016) Rendezvous based routing protocol for wireless sensor networks with mobile sink. J Supercomput 73(3):1168–1188CrossRef Sharma S, Puthal D, Jena SK et al (2016) Rendezvous based routing protocol for wireless sensor networks with mobile sink. J Supercomput 73(3):1168–1188CrossRef
12.
Zurück zum Zitat Li C, Bai J, Gu J et al (2018) Clustering routing based on mixed integer programming for heterogeneous wireless sensor networks. Ad Hoc Netw 72:81–90CrossRef Li C, Bai J, Gu J et al (2018) Clustering routing based on mixed integer programming for heterogeneous wireless sensor networks. Ad Hoc Netw 72:81–90CrossRef
13.
Zurück zum Zitat Darabkh KA, Al-Maaitah NJ, Jafar IF et al (2018) EA-CRP: a novel energy-aware clustering and routing protocol in wireless sensor networks. Comput Electr Eng 72:702–718CrossRef Darabkh KA, Al-Maaitah NJ, Jafar IF et al (2018) EA-CRP: a novel energy-aware clustering and routing protocol in wireless sensor networks. Comput Electr Eng 72:702–718CrossRef
14.
Zurück zum Zitat Manfredi S, Natalizio E, Pascariello C et al (2020) Stability and convergence of a message-loss-tolerant rendezvous algorithm for wireless networked robot systems. IEEE Trans Control Netw Syst 7(3):1103–1114MathSciNetMATHCrossRef Manfredi S, Natalizio E, Pascariello C et al (2020) Stability and convergence of a message-loss-tolerant rendezvous algorithm for wireless networked robot systems. IEEE Trans Control Netw Syst 7(3):1103–1114MathSciNetMATHCrossRef
15.
Zurück zum Zitat Dinh NT, Gu T, Kim Y (2019) Rendezvous cost-aware opportunistic routing in heterogeneous duty-cycled wireless sensor network systems. IEEE Access 7:121825–121840CrossRef Dinh NT, Gu T, Kim Y (2019) Rendezvous cost-aware opportunistic routing in heterogeneous duty-cycled wireless sensor network systems. IEEE Access 7:121825–121840CrossRef
16.
Zurück zum Zitat Hamerly G, Elkan C (2003) Learning the k in k-means. Adv Neural Inf Process Syst 16:281–288 Hamerly G, Elkan C (2003) Learning the k in k-means. Adv Neural Inf Process Syst 16:281–288
17.
Zurück zum Zitat Lu YM, Wong VWS (2006) An energy-efficient multipath routing protocol for wireless sensor networks. In: IEEE Vehicular Technology Conference Lu YM, Wong VWS (2006) An energy-efficient multipath routing protocol for wireless sensor networks. In: IEEE Vehicular Technology Conference
18.
Zurück zum Zitat Liao Y, Qi H, Li W (2013) Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sens J 13(5):1498–1506CrossRef Liao Y, Qi H, Li W (2013) Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sens J 13(5):1498–1506CrossRef
19.
Zurück zum Zitat Baccour N, Youssef H (2015) Reliable link quality estimation in low-power wireless networks and its impact on tree-routing. Ad Hoc Netw 27:1–25CrossRef Baccour N, Youssef H (2015) Reliable link quality estimation in low-power wireless networks and its impact on tree-routing. Ad Hoc Netw 27:1–25CrossRef
20.
Zurück zum Zitat Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers Commun 78(1):231–246CrossRef Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers Commun 78(1):231–246CrossRef
21.
Zurück zum Zitat Suganthi K, Vinayagasundaram B, Aarthi J (2015) Randomized fault-tolerant virtual backbone tree to improve the lifetime of wireless sensor networks. Comput Electr Eng 48:286–297CrossRef Suganthi K, Vinayagasundaram B, Aarthi J (2015) Randomized fault-tolerant virtual backbone tree to improve the lifetime of wireless sensor networks. Comput Electr Eng 48:286–297CrossRef
22.
Zurück zum Zitat Han Z, Wu J, Zhang J et al (2014) A general self-organized tree-based energy-balance routing protocol for wireless sensor network. IEEE Trans Nucl Sci 61(2):732–740CrossRef Han Z, Wu J, Zhang J et al (2014) A general self-organized tree-based energy-balance routing protocol for wireless sensor network. IEEE Trans Nucl Sci 61(2):732–740CrossRef
23.
Zurück zum Zitat Villas LA, Boukerche A, Ramos HS et al (2013) DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Trans Comput 62(4):676–689MathSciNetMATHCrossRef Villas LA, Boukerche A, Ramos HS et al (2013) DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Trans Comput 62(4):676–689MathSciNetMATHCrossRef
24.
Zurück zum Zitat Karaboga D, Okdem S, Ozturk C (2012) Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Netw 18(7):847–860CrossRef Karaboga D, Okdem S, Ozturk C (2012) Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Netw 18(7):847–860CrossRef
25.
Zurück zum Zitat Younis O, Fahmy S (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379CrossRef Younis O, Fahmy S (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379CrossRef
26.
Zurück zum Zitat Sohn I, Lee J, Lee SH (2016) Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks. IEEE Commun Lett 20(3):558–561CrossRef Sohn I, Lee J, Lee SH (2016) Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks. IEEE Commun Lett 20(3):558–561CrossRef
27.
Zurück zum Zitat Heinzelman W R, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences Heinzelman W R, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences
28.
Zurück zum Zitat Wang T, Zhang G, Yang X et al (2018) Genetic algorithm for energy-efficient clustering and routing in wireless sensor networks. J Syst Softw 146:196–214CrossRef Wang T, Zhang G, Yang X et al (2018) Genetic algorithm for energy-efficient clustering and routing in wireless sensor networks. J Syst Softw 146:196–214CrossRef
29.
Zurück zum Zitat Yun YS, Xia Y (2010) Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Trans Mob Comput 9(9):1308–1318CrossRef Yun YS, Xia Y (2010) Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Trans Mob Comput 9(9):1308–1318CrossRef
30.
Zurück zum Zitat Kleerekoper A, Filer NP (2014) DECOR: Distributed construction of load balanced routing trees for many to one sensor networks. Ad Hoc Netw 16(2):225–236CrossRef Kleerekoper A, Filer NP (2014) DECOR: Distributed construction of load balanced routing trees for many to one sensor networks. Ad Hoc Netw 16(2):225–236CrossRef
31.
Zurück zum Zitat Han SW, Jeong IS, Kang SH (2013) Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. J Netw Comput Appl 36(1):156–166CrossRef Han SW, Jeong IS, Kang SH (2013) Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. J Netw Comput Appl 36(1):156–166CrossRef
32.
Zurück zum Zitat Liu WJ, Fan JX, Zhang SK et al (2013) Clustering-based data gathering in wireless sensor network with mobile collector. Appl Mech Mater 336–338(1):261–264 Liu WJ, Fan JX, Zhang SK et al (2013) Clustering-based data gathering in wireless sensor network with mobile collector. Appl Mech Mater 336–338(1):261–264
33.
Zurück zum Zitat Saranya V, Shankar S, Kanagachidambaresan GR (2018) Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink. Wireless Pers Commun 100(4):1553–1567CrossRef Saranya V, Shankar S, Kanagachidambaresan GR (2018) Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink. Wireless Pers Commun 100(4):1553–1567CrossRef
34.
Zurück zum Zitat Tang J, Yang W, Zhu L et al (2017) An adaptive clustering approach based on minimum travel route planning for wireless sensor networks with a mobile sink. Sensors (Basel) 17(5):964CrossRef Tang J, Yang W, Zhu L et al (2017) An adaptive clustering approach based on minimum travel route planning for wireless sensor networks with a mobile sink. Sensors (Basel) 17(5):964CrossRef
35.
Zurück zum Zitat Nayak SP, Rai SC, Pradhan S (2017) A multi-clustering approach to achieve energy efficiency using mobile sink in WSN. In: Behera H, Mohapatra D (eds) Computational intelligence in data mining. Advances in Intelligent Systems and Computing, vol 556. Springer, Singapore Nayak SP, Rai SC, Pradhan S (2017) A multi-clustering approach to achieve energy efficiency using mobile sink in WSN. In: Behera H, Mohapatra D (eds) Computational intelligence in data mining. Advances in Intelligent Systems and Computing, vol 556. Springer, Singapore
36.
Zurück zum Zitat Zhang R, Pan J, Xie D et al (2016) NDCMC: A hybrid data collection approach for large-scale WSNS using mobile element and hierarchical clustering. IEEE Internet Things J 3(4):533–543CrossRef Zhang R, Pan J, Xie D et al (2016) NDCMC: A hybrid data collection approach for large-scale WSNS using mobile element and hierarchical clustering. IEEE Internet Things J 3(4):533–543CrossRef
37.
Zurück zum Zitat Wang J, Cao Y, Li B et al (2016) Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Gener Comput Syst 76:452–457CrossRef Wang J, Cao Y, Li B et al (2016) Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Gener Comput Syst 76:452–457CrossRef
38.
Zurück zum Zitat Sha C, Qiu JM, Lu TY et al (2017) Virtual region based data gathering method with mobile sink for sensor networks. Wireless Netw 24(8):1793–1807 Sha C, Qiu JM, Lu TY et al (2017) Virtual region based data gathering method with mobile sink for sensor networks. Wireless Netw 24(8):1793–1807
39.
Zurück zum Zitat Pottie GJ (1999) Wireless integrated network sensors. Wireless Integr Netw Sens Next Gener 43(5):51–58 Pottie GJ (1999) Wireless integrated network sensors. Wireless Integr Netw Sens Next Gener 43(5):51–58
Metadaten
Titel
A cluster-tree-based energy-efficient routing protocol for wireless sensor networks with a mobile sink
verfasst von
JiaYu Lu
KongFa Hu
XiChen Yang
ChenJun Hu
TianShu Wang
Publikationsdatum
18.11.2020
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 6/2021
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-020-03501-w

Weitere Artikel der Ausgabe 6/2021

The Journal of Supercomputing 6/2021 Zur Ausgabe