Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

13.12.2022 | Research Article-mechanical Engineering

A Comparative Study for Solidification of Nanoparticles Suspended in Nanofluids through Non-Local Kernel Approach

verfasst von: Samia Riaz, Muhammad Amir, Imran Qasim Memon, Qasim Ali, Kashif Ali Abro

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The nanoparticles reduce heat dissipation during the solidification and combustion process, this is because the dispersion of nanoparticles accelerates the solidification processes. In this paper, the comparative study of an unsteady free convection MHD flow of nanofluids through an accelerated long vertical plate placed in a porous medium with embedded nanoparticles is proposed for solidification trends. The flow is confined to a moving plate under the inclined magnetic field and affected by chemical reactions, Newtonian heating, and thermal radiation. The governing equations for concentration, temperature, and velocity are reduced in dimensionless and fractionalized with innovative fractional derivatives of Caputo-Fabrizio and Atangana-Baleanu. The Laplace transform is employed on governing equations based on water as base fluid with nanoparticles. The numerical inversion technique, namely the Zakian method, is used. The results suggest the decaying behavior of velocity and temperature with both fractional models based on the memory of the flow at a specific time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aleem, M.; Asjad, M.I.; Shaheen, A.; Khan, I.: MHD Influence on different water-based nanofluids (TiO2, Al2O3, CuO) in a porous medium with chemical reaction and Newtonian heating. Chaos Soliton Fractal 130, 109437 (2020)CrossRefMATH Aleem, M.; Asjad, M.I.; Shaheen, A.; Khan, I.: MHD Influence on different water-based nanofluids (TiO2, Al2O3, CuO) in a porous medium with chemical reaction and Newtonian heating. Chaos Soliton Fractal 130, 109437 (2020)CrossRefMATH
2.
Zurück zum Zitat Wu, C.C.; Tom, C.: Further study of the dynamics of two-dimensional MHD coherent structures—a large-scale simulation. J. Atmos. Sol. Terr. Phys. 63(13), 1447–1453 (2001)CrossRef Wu, C.C.; Tom, C.: Further study of the dynamics of two-dimensional MHD coherent structures—a large-scale simulation. J. Atmos. Sol. Terr. Phys. 63(13), 1447–1453 (2001)CrossRef
3.
Zurück zum Zitat Zhang, C.; Zheng, L.; Zhang, X.; Chen, G.: MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Model. 39(1), 165–181 (2015)MathSciNetCrossRefMATH Zhang, C.; Zheng, L.; Zhang, X.; Chen, G.: MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Model. 39(1), 165–181 (2015)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Awan, A.U.; Nehad Ali, S.; Najma, A.; Qasim, A.; Riaz, S.: Analysis of free convection flow of viscous fluid with damped thermal and mass fluxes. Chin. J. Phys. 60, 98–106 (2019)MathSciNetCrossRef Awan, A.U.; Nehad Ali, S.; Najma, A.; Qasim, A.; Riaz, S.: Analysis of free convection flow of viscous fluid with damped thermal and mass fluxes. Chin. J. Phys. 60, 98–106 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Ali, Q.; Riaz, S.; Awan, A.U.; Abro, K.A.: Thermal investigation for electrified convection flow of Newtonian fluid subjected to damped thermal flux on a permeable medium. Phys. Scr. 95(11), 115003 (2020)CrossRef Ali, Q.; Riaz, S.; Awan, A.U.; Abro, K.A.: Thermal investigation for electrified convection flow of Newtonian fluid subjected to damped thermal flux on a permeable medium. Phys. Scr. 95(11), 115003 (2020)CrossRef
6.
Zurück zum Zitat Awan, A.U.; Ali, Q.; Riaz, S.; Shah, N.A.; Chung, J.D.: A thermal optimization throughan innovative mechanism of free convection flow of Jeffrey fluid using non-local kernel. Case Stud. Therm. Eng. 24, 100851 (2021)CrossRef Awan, A.U.; Ali, Q.; Riaz, S.; Shah, N.A.; Chung, J.D.: A thermal optimization throughan innovative mechanism of free convection flow of Jeffrey fluid using non-local kernel. Case Stud. Therm. Eng. 24, 100851 (2021)CrossRef
7.
Zurück zum Zitat Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne, Argonne National Lab (ANL) (1995) Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne, Argonne National Lab (ANL) (1995)
8.
Zurück zum Zitat Das, S.K.; Choi, S.U.; Wenhua, Yu.; Pradeep, T.: Nanofluids: science and technology. John Wiley & Sons, New York (2007)CrossRef Das, S.K.; Choi, S.U.; Wenhua, Yu.; Pradeep, T.: Nanofluids: science and technology. John Wiley & Sons, New York (2007)CrossRef
9.
Zurück zum Zitat Wang, X.-Q.; Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)CrossRef Wang, X.-Q.; Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)CrossRef
10.
Zurück zum Zitat Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)CrossRef Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)CrossRef
11.
Zurück zum Zitat Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids-part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008)CrossRef Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids-part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008)CrossRef
12.
Zurück zum Zitat Kakaç, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)CrossRefMATH Kakaç, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)CrossRefMATH
13.
Zurück zum Zitat Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)CrossRefMATH Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)CrossRefMATH
14.
Zurück zum Zitat Abro, K.A.; Khan, I.; Gomez-Aguilar, J.F.: Heat transfer in magnetohydrodynamic free convection flow of generalized ferrofluid with magnetite nanoparticles. J. Therm. Anal. Calorim. 143, 3633–3642 (2021)CrossRef Abro, K.A.; Khan, I.; Gomez-Aguilar, J.F.: Heat transfer in magnetohydrodynamic free convection flow of generalized ferrofluid with magnetite nanoparticles. J. Therm. Anal. Calorim. 143, 3633–3642 (2021)CrossRef
15.
Zurück zum Zitat Wang, J.; Yi-Peng, X.; Raed, Q.; Jafaryar, M.; Mashhour, A.A.; Abu-Hamdeh, N.H.; Alibek, I.; Mahmoud, M.S.: Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Pet. Sci. Eng. 208, 109734 (2022)CrossRef Wang, J.; Yi-Peng, X.; Raed, Q.; Jafaryar, M.; Mashhour, A.A.; Abu-Hamdeh, N.H.; Alibek, I.; Mahmoud, M.S.: Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Pet. Sci. Eng. 208, 109734 (2022)CrossRef
16.
Zurück zum Zitat Roy, N.C.; Pop, I.: Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet. Eur. Phys. J. Plus 135(9), 768 (2020)CrossRef Roy, N.C.; Pop, I.: Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet. Eur. Phys. J. Plus 135(9), 768 (2020)CrossRef
17.
Zurück zum Zitat Roy, N.C.; Pop, I.: Exact solutions of Stokes’ second problem for hybrid nanofluid flow with a heat source. Phys. Fluid 33(6), 063603 (2021)CrossRef Roy, N.C.; Pop, I.: Exact solutions of Stokes’ second problem for hybrid nanofluid flow with a heat source. Phys. Fluid 33(6), 063603 (2021)CrossRef
18.
Zurück zum Zitat Roy, N.C.; Pop, I.: Analytical investigation of transient free convection and heat transfer of a hybrid nanofluid between two vertical parallel plates. Phys. Fluid 34(7), 072005 (2022)CrossRef Roy, N.C.; Pop, I.: Analytical investigation of transient free convection and heat transfer of a hybrid nanofluid between two vertical parallel plates. Phys. Fluid 34(7), 072005 (2022)CrossRef
19.
Zurück zum Zitat Roy, N.C.; Ghosh, A.: Magnetohydrodynamic natural convection of second-grade hybrid nanofluid on variable heat flux surface. AIP Adv 12(3), 035243 (2022)CrossRef Roy, N.C.; Ghosh, A.: Magnetohydrodynamic natural convection of second-grade hybrid nanofluid on variable heat flux surface. AIP Adv 12(3), 035243 (2022)CrossRef
20.
Zurück zum Zitat Roy, N.C.; Pop, I.: Unsteady magnetohydrodynamic stagnation point flow of a nanofluid past a permeable shrinking sheet. Chin. J. Phys. 75, 109–119 (2022)MathSciNetCrossRef Roy, N.C.; Pop, I.: Unsteady magnetohydrodynamic stagnation point flow of a nanofluid past a permeable shrinking sheet. Chin. J. Phys. 75, 109–119 (2022)MathSciNetCrossRef
21.
Zurück zum Zitat Sheikholeslami, M.; Ganji, D.D.: Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)CrossRef Sheikholeslami, M.; Ganji, D.D.: Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)CrossRef
22.
Zurück zum Zitat Loganathan, P.; Nirmal-Chand, P.; Ganesan, P.: Radiation effects on an unsteady natural convective flow of a nanofluid past an infinite vertical plate. NANO 8(1), 1350001 (2013)CrossRef Loganathan, P.; Nirmal-Chand, P.; Ganesan, P.: Radiation effects on an unsteady natural convective flow of a nanofluid past an infinite vertical plate. NANO 8(1), 1350001 (2013)CrossRef
23.
Zurück zum Zitat Khalid, A.; Khan, I.; Shafie, S.: Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur. Phys. J. Plus 130(4), 1–14 (2015)CrossRef Khalid, A.; Khan, I.; Shafie, S.: Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur. Phys. J. Plus 130(4), 1–14 (2015)CrossRef
24.
Zurück zum Zitat Azhar, W.A.; Vieru, D.; Fetecau, C.: Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source. Phys. Fluid 29(8), 082001 (2017)CrossRef Azhar, W.A.; Vieru, D.; Fetecau, C.: Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source. Phys. Fluid 29(8), 082001 (2017)CrossRef
25.
Zurück zum Zitat Fetecau, C.; Vieru, D.; Azhar, W.A.: Natural convection flow of fractional nanofluids over an isothermal vertical plate with thermal radiation. Appl. Sci. 7(3), 247 (2017)CrossRef Fetecau, C.; Vieru, D.; Azhar, W.A.: Natural convection flow of fractional nanofluids over an isothermal vertical plate with thermal radiation. Appl. Sci. 7(3), 247 (2017)CrossRef
26.
Zurück zum Zitat Sheikh, N.A.; Ching, D.L.C.; Khan, I.; Kumar, D.; Kottakkaran, S.N.: A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alex. Eng. J. 59(5), 2865–2876 (2020)CrossRef Sheikh, N.A.; Ching, D.L.C.; Khan, I.; Kumar, D.; Kottakkaran, S.N.: A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alex. Eng. J. 59(5), 2865–2876 (2020)CrossRef
28.
39.
Zurück zum Zitat Ahmed, N.; Vieru, D.; Fetecau, C.; Shah, N.A.: Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel. Phys. Fluid 30(5), 052002 (2018)CrossRef Ahmed, N.; Vieru, D.; Fetecau, C.; Shah, N.A.: Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel. Phys. Fluid 30(5), 052002 (2018)CrossRef
40.
Zurück zum Zitat Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992) Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992)
41.
Zurück zum Zitat Caputo, M.; Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015) Caputo, M.; Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
42.
Zurück zum Zitat Abro, K.A.; Gomez-Aguilar, J.F.: Fractional modeling of fin on non-Fourier heat conduction via modern fractional differential operators. Arab. J. Sci. Eng. 46(3), 2901–2910 (2021)CrossRef Abro, K.A.; Gomez-Aguilar, J.F.: Fractional modeling of fin on non-Fourier heat conduction via modern fractional differential operators. Arab. J. Sci. Eng. 46(3), 2901–2910 (2021)CrossRef
43.
Zurück zum Zitat Atangana A, and D Baleanu. "New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model." arXiv preprint arXiv:1602.03408 (2016). Atangana A, and D Baleanu. "New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model." arXiv preprint arXiv:​1602.​03408 (2016).
44.
Zurück zum Zitat Riaz, M.B.; Iftikhar, N.: A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators. Chaos Soliton Fractal 132, 109556 (2020)MathSciNetCrossRefMATH Riaz, M.B.; Iftikhar, N.: A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators. Chaos Soliton Fractal 132, 109556 (2020)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Halsted, D.J.; Brown, D.E.: Zakian’s technique for inverting laplace transforms. Chem. Eng. J. 3, 312–313 (1972)CrossRef Halsted, D.J.; Brown, D.E.: Zakian’s technique for inverting laplace transforms. Chem. Eng. J. 3, 312–313 (1972)CrossRef
Metadaten
Titel
A Comparative Study for Solidification of Nanoparticles Suspended in Nanofluids through Non-Local Kernel Approach
verfasst von
Samia Riaz
Muhammad Amir
Imran Qasim Memon
Qasim Ali
Kashif Ali Abro
Publikationsdatum
13.12.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07493-y

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.