Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

12.12.2022 | Research Article-Mechanical Engineering

Numerical Investigation of Magnetohydrodynamic Forced Convection and Entropy Production of Ferrofluid Around a Confined Cylinder Using Wire Magnetic Sources

verfasst von: Sergen Tumse, Harun Zontul, Hudhaifa Hamzah, Besir Sahin

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current study numerically explored the hydrothermal flow and entropy generation properties of ferrofluid (water and Fe3O4) on a cylindrical body in the rectangular channel subjected to the non-uniform magnetic field going through current carrying wires. The effect of various parameters, such as ferrofluid volume fraction, Φ the strength of the non-uniform magnetic field, Ha, and Reynolds number, Re, on the flow characteristics, and forced convection heat transfer, is investigated using finite-volume-based Ansys Fluent 20. Obtained results demonstrate that the applied magnetic field shortens the length of recirculating wake downstream of the cylinder at Re = 25 and makes unsteady flow with alternate vortex shedding as time-independent steady flow for Hartmann numbers greater than Ha ≥ 6 at Re = 100. At Re = 50, the total drag coefficient, CD, gets higher by almost 20% when Ha increases from Ha = 0 to Ha = 6 and subsequently grows by 61% at Ha = 10. The findings show that the average Nusselt number, Nuavg, demonstrates monotonic behavior with the Ha and it augments when the strength of the non-uniform magnetic field increases. The Nuavg improvement is in the vicinity of 11.71% at Ha = 10 and 23.26% at Ha = 18 for Re = 25. The maximum value of entropy generation reduces, SL, when the non-uniform magnetic field is applied. Moreover, increasing the Hartmann number, Ha influences the high levels region of entropy production by relatively extending this zone towards the downstream of the channel and covering more area around the cylinder. According to the outcomes of numerical simulation, there is an increase in Nuavg with 3.98% and 3.88% for Ha = 2 and 18, respectively, when the ferrofluid volume fraction rises from Φ = 0% to Φ = 4% at Re = 25. Finally, the optimum thermal performance criterion, ξ, is obtained at Re = 150 for Ha = 0 and Φ = 4%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akilli, H.; Sahin, B.; Filiz Tumen, N.: Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate. Flow Meas. Instrum. 16, 211–219 (2005) Akilli, H.; Sahin, B.; Filiz Tumen, N.: Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate. Flow Meas. Instrum. 16, 211–219 (2005)
2.
Zurück zum Zitat Pinar, E.; Ozkan, G.M.; Durhasan, T.; Aksoy, M.M.; Akilli, H.; Sahin, B.: Flow structure around perforated cylinders in shallow water. J. Fluids Struct. 55, 52–63 (2015) Pinar, E.; Ozkan, G.M.; Durhasan, T.; Aksoy, M.M.; Akilli, H.; Sahin, B.: Flow structure around perforated cylinders in shallow water. J. Fluids Struct. 55, 52–63 (2015)
3.
Zurück zum Zitat Tokumaru, P.T.; Dimotakis, P.E.: Rotary oscillation control of a cylinder wake. J. Fluid Mech. 224, 77–90 (1991) Tokumaru, P.T.; Dimotakis, P.E.: Rotary oscillation control of a cylinder wake. J. Fluid Mech. 224, 77–90 (1991)
4.
Zurück zum Zitat Roussopoulos, K.: Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267–296 (1993) Roussopoulos, K.: Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267–296 (1993)
5.
Zurück zum Zitat Li, Z.; Navon, I.M.; Hussaini, M.Y.; Le Dimet, F.-X.: Optimal control of cylinder wakes via suction and blowing. Comput. Fluids 32, 149–171 (2003)MATH Li, Z.; Navon, I.M.; Hussaini, M.Y.; Le Dimet, F.-X.: Optimal control of cylinder wakes via suction and blowing. Comput. Fluids 32, 149–171 (2003)MATH
6.
Zurück zum Zitat Oruç, V.; Atakan Akar, M.; Akilli, H.; Sahin, B.: Suppression of asymmetric flow behavior downstream of two side-by-side circular cylinders with a splitter plate in shallow water. Measurement 46, 442–455 (2013) Oruç, V.; Atakan Akar, M.; Akilli, H.; Sahin, B.: Suppression of asymmetric flow behavior downstream of two side-by-side circular cylinders with a splitter plate in shallow water. Measurement 46, 442–455 (2013)
7.
Zurück zum Zitat Armellini, A.; Casarsa, L.; Giannattasio, P.: Separated flow structures around a cylindrical obstacle in a narrow channel. Exp. Therm. Fluid Sci. 33, 604–619 (2009) Armellini, A.; Casarsa, L.; Giannattasio, P.: Separated flow structures around a cylindrical obstacle in a narrow channel. Exp. Therm. Fluid Sci. 33, 604–619 (2009)
8.
Zurück zum Zitat Prasad, K.; Paramane, S.B.; Agrawal, A.; Sharma, A.: Effect of channel-confinement and rotation on the two-dimensional laminar flow and heat transfer across a cylinder. Numer. Heat Transf. Part A Appl. 60, 699–726 (2011) Prasad, K.; Paramane, S.B.; Agrawal, A.; Sharma, A.: Effect of channel-confinement and rotation on the two-dimensional laminar flow and heat transfer across a cylinder. Numer. Heat Transf. Part A Appl. 60, 699–726 (2011)
9.
Zurück zum Zitat Jeong, Y.D.; Ahn, K.H.; Kim, M.J.; Lee, J.H.: Heat transfer enhancement in a channel flow using two wall-mounted flexible flags with a confined cylinder. Int. J. Heat Mass Transf. 195, 123185 (2022) Jeong, Y.D.; Ahn, K.H.; Kim, M.J.; Lee, J.H.: Heat transfer enhancement in a channel flow using two wall-mounted flexible flags with a confined cylinder. Int. J. Heat Mass Transf. 195, 123185 (2022)
10.
Zurück zum Zitat Ooi, A.; Chan, L.; Aljubaili, D.; Mamon, C.; Leontini, J.S.; Skvortsov, A.; Mathupriya, P.; Hasini, H.: Some new characteristics of the confined flow over circular cylinders at low Reynolds numbers. Int. J. Heat Fluid Flow 86, 108741 (2020) Ooi, A.; Chan, L.; Aljubaili, D.; Mamon, C.; Leontini, J.S.; Skvortsov, A.; Mathupriya, P.; Hasini, H.: Some new characteristics of the confined flow over circular cylinders at low Reynolds numbers. Int. J. Heat Fluid Flow 86, 108741 (2020)
11.
Zurück zum Zitat Kurtulmuş, N.: Experimental investigation of flow structure and heat transfer characteristics for confined cylinders. Int. Commun. Heat Mass Transf. 133, 105959 (2022) Kurtulmuş, N.: Experimental investigation of flow structure and heat transfer characteristics for confined cylinders. Int. Commun. Heat Mass Transf. 133, 105959 (2022)
12.
Zurück zum Zitat Ozturk, N.A.; Akkoca, A.; Sahin, B.: PIV measurements of flow past a confined cylinder. Exp. Fluids 44, 1001–1014 (2008) Ozturk, N.A.; Akkoca, A.; Sahin, B.: PIV measurements of flow past a confined cylinder. Exp. Fluids 44, 1001–1014 (2008)
13.
Zurück zum Zitat Anagnostopoulos, P.; Iliadis, G.; Richardson, S.: Numerical study of the blockage effects on viscous flow past a circular cylinder. Int. J. Numer. Methods Fluids 22, 1061–1074 (1996)MATH Anagnostopoulos, P.; Iliadis, G.; Richardson, S.: Numerical study of the blockage effects on viscous flow past a circular cylinder. Int. J. Numer. Methods Fluids 22, 1061–1074 (1996)MATH
14.
Zurück zum Zitat Behr, M.; Hastreiter, D.; Mittal, S.; Tezduyar, T.E.: Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries. Comput. Methods Appl. Mech. Eng. 123, 309–316 (1995) Behr, M.; Hastreiter, D.; Mittal, S.; Tezduyar, T.E.: Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries. Comput. Methods Appl. Mech. Eng. 123, 309–316 (1995)
15.
Zurück zum Zitat Zovatto, L.; Pedrizzetti, G.: Flow about a circular cylinder between parallel walls. J. Fluid Mech. 440, 1–25 (2001)MATH Zovatto, L.; Pedrizzetti, G.: Flow about a circular cylinder between parallel walls. J. Fluid Mech. 440, 1–25 (2001)MATH
16.
Zurück zum Zitat Mousavi, S.V.; Sheikholeslami, M.; Gorji bandpy, M.; Barzegar Gerdroodbary, M.: The influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger. Chem. Eng. Res. Des. 113, 112–124 (2016) Mousavi, S.V.; Sheikholeslami, M.; Gorji bandpy, M.; Barzegar Gerdroodbary, M.: The influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger. Chem. Eng. Res. Des. 113, 112–124 (2016)
17.
Zurück zum Zitat Aminfar, H.; Mohammadpourfard, M.; Ahangar Zonouzi, S.: Numerical Study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J. Magn. Magn. Mater. 327, 31–42 (2013) Aminfar, H.; Mohammadpourfard, M.; Ahangar Zonouzi, S.: Numerical Study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J. Magn. Magn. Mater. 327, 31–42 (2013)
18.
Zurück zum Zitat Sahin, A.Z.; Uddin, M.A.; Yilbas, B.S.; Al-Sharafi, A.: Performance enhancement of solar energy systems using nanofluids: an updated review. Renew Energy 145, 1126–1148 (2020) Sahin, A.Z.; Uddin, M.A.; Yilbas, B.S.; Al-Sharafi, A.: Performance enhancement of solar energy systems using nanofluids: an updated review. Renew Energy 145, 1126–1148 (2020)
19.
Zurück zum Zitat Al-Rashed, A.A.A.A.; Kalidasan, K.; Kolsi, L.; Velkennedy, R.; Aydi, A.; Hussein, A.K.; Malekshah, E.H.: Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block. Int. J. Mech. Sci. 135, 362–375 (2018) Al-Rashed, A.A.A.A.; Kalidasan, K.; Kolsi, L.; Velkennedy, R.; Aydi, A.; Hussein, A.K.; Malekshah, E.H.: Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block. Int. J. Mech. Sci. 135, 362–375 (2018)
20.
Zurück zum Zitat Kasaeian, A.; Daneshazarian, R.; Mahian, O.; Kolsi, L.; Chamkha, A.J.; Wongwises, S.; Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017) Kasaeian, A.; Daneshazarian, R.; Mahian, O.; Kolsi, L.; Chamkha, A.J.; Wongwises, S.; Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)
21.
Zurück zum Zitat Morley, N.B.; Smolentsev, S.; Barleon, L.; Kirillov, I.R.; Takahashi, M.: Liquid magnetohydrodynamics—recent progress and future directions for fusion. Fusion Eng. Des. 51–52, 701–713 (2000) Morley, N.B.; Smolentsev, S.; Barleon, L.; Kirillov, I.R.; Takahashi, M.: Liquid magnetohydrodynamics—recent progress and future directions for fusion. Fusion Eng. Des. 51–52, 701–713 (2000)
22.
Zurück zum Zitat Kanaris, N.; Albets, X.; Grigoriadis, D.; Kassinos, S.: Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields. Phys. Fluids 25, 074102 (2013) Kanaris, N.; Albets, X.; Grigoriadis, D.; Kassinos, S.: Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields. Phys. Fluids 25, 074102 (2013)
23.
Zurück zum Zitat Lahjomri, J.; Capéran, P.; Alemany, A.: The cylinder wake in a magnetic field aligned with the velocity. J. Fluid Mech. 253, 421 (1993) Lahjomri, J.; Capéran, P.; Alemany, A.: The cylinder wake in a magnetic field aligned with the velocity. J. Fluid Mech. 253, 421 (1993)
24.
Zurück zum Zitat Mutschke, G.; Gerbeth, G.; Shatrov, V.; Tomboulides, A.: The scenario of three-dimensional instabilities of the cylinder wake in an external magnetic field: a linear stability analysis. Phys. Fluids 13, 723–734 (2001)MATH Mutschke, G.; Gerbeth, G.; Shatrov, V.; Tomboulides, A.: The scenario of three-dimensional instabilities of the cylinder wake in an external magnetic field: a linear stability analysis. Phys. Fluids 13, 723–734 (2001)MATH
25.
Zurück zum Zitat Dousset, V.; Pothérat, A.: Numerical simulations of a cylinder wake under a strong axial magnetic field. Phys. Fluids 20, 017104 (2008)MATH Dousset, V.; Pothérat, A.: Numerical simulations of a cylinder wake under a strong axial magnetic field. Phys. Fluids 20, 017104 (2008)MATH
26.
Zurück zum Zitat Hussam, W.K.; Thompson, M.C.; Sheard, G.J.: Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number. Int. J. Heat Mass Transf. 54, 1091–1100 (2011)MATH Hussam, W.K.; Thompson, M.C.; Sheard, G.J.: Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number. Int. J. Heat Mass Transf. 54, 1091–1100 (2011)MATH
27.
Zurück zum Zitat Selimefendigil, F.; Öztop, H.F.: Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int. J. Mech. Sci. 146–147, 9–24 (2018) Selimefendigil, F.; Öztop, H.F.: Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int. J. Mech. Sci. 146–147, 9–24 (2018)
28.
Zurück zum Zitat Sekhar, T.V.S.; Sivakumar, R.; Kumar, H.; Ravi kumar, T.V.R.: Effect of aligned magnetic field on the steady viscous flow past a circular cylinder. Appl. Math. Modell. 31, 130–139 (2007)MATH Sekhar, T.V.S.; Sivakumar, R.; Kumar, H.; Ravi kumar, T.V.R.: Effect of aligned magnetic field on the steady viscous flow past a circular cylinder. Appl. Math. Modell. 31, 130–139 (2007)MATH
29.
Zurück zum Zitat Nikelham, A.; Enjilela, V.; Vaziri, N.; Poolaei Moziraji, Z.: The effects of magnetic-field direction and magnitude on forced convection of aluminum oxide–water nanofluid over a circular cylinder. Int. J. Therm. Sci. 173, 107398 (2022) Nikelham, A.; Enjilela, V.; Vaziri, N.; Poolaei Moziraji, Z.: The effects of magnetic-field direction and magnitude on forced convection of aluminum oxide–water nanofluid over a circular cylinder. Int. J. Therm. Sci. 173, 107398 (2022)
30.
Zurück zum Zitat Udhayakumar, S.; Rajeesh, A.D.A.; Sekhar, T.V.S.; Sivakumar, R.: Study of directional control of heat transfer and flow control in the magnetohydrodynamic flow in cylindrical geometry. Int. J. Heat Fluid Flow. 61, 482–498 (2016) Udhayakumar, S.; Rajeesh, A.D.A.; Sekhar, T.V.S.; Sivakumar, R.: Study of directional control of heat transfer and flow control in the magnetohydrodynamic flow in cylindrical geometry. Int. J. Heat Fluid Flow. 61, 482–498 (2016)
31.
Zurück zum Zitat Tassone, A.; Nobili, M.; Caruso, G.: Numerical study of the MHD flow around a bounded heating cylinder: heat transfer and pressure drops. Int. Commun. Heat Mass Transf. 91, 165–175 (2018) Tassone, A.; Nobili, M.; Caruso, G.: Numerical study of the MHD flow around a bounded heating cylinder: heat transfer and pressure drops. Int. Commun. Heat Mass Transf. 91, 165–175 (2018)
32.
Zurück zum Zitat Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.: Investigation of nanofluid flow and heat transfer in presence of magnetic field using KKL model. Arab. J. Sci. Eng. 39, 5007–5016 (2014) Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.: Investigation of nanofluid flow and heat transfer in presence of magnetic field using KKL model. Arab. J. Sci. Eng. 39, 5007–5016 (2014)
33.
Zurück zum Zitat Hosseinizadeh, S.E.; Majidi, S.; Goharkhah, M.; Jahangiri, A.: Energy and exergy analysis of ferrofluid flow in a triple tube heat exchanger under the influence of an external magnetic field. Therm. Sci. Eng. Prog. 25, 101019 (2021) Hosseinizadeh, S.E.; Majidi, S.; Goharkhah, M.; Jahangiri, A.: Energy and exergy analysis of ferrofluid flow in a triple tube heat exchanger under the influence of an external magnetic field. Therm. Sci. Eng. Prog. 25, 101019 (2021)
34.
Zurück zum Zitat Rashidi, S.; Esfahani, J.A.: The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel. J. Magn. Magn. Mater. 391, 5–11 (2015) Rashidi, S.; Esfahani, J.A.: The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel. J. Magn. Magn. Mater. 391, 5–11 (2015)
35.
Zurück zum Zitat Arjun, K.S.; Rakesh, K.: Heat transfer in magnetohydrodynamic nanofluid flow past a circular cylinder. Phys. Fluids. 32, 045112 (2020) Arjun, K.S.; Rakesh, K.: Heat transfer in magnetohydrodynamic nanofluid flow past a circular cylinder. Phys. Fluids. 32, 045112 (2020)
36.
Zurück zum Zitat Blishchik, A.; van der Lans, M.; Kenjereš, S.: An extensive numerical benchmark of the various magnetohydrodynamic flows. International Journal of Heat and Fluid Flow. 90, 108800 (2021) Blishchik, A.; van der Lans, M.; Kenjereš, S.: An extensive numerical benchmark of the various magnetohydrodynamic flows. International Journal of Heat and Fluid Flow. 90, 108800 (2021)
37.
Zurück zum Zitat Sáchica, D.; Salcedo, E.; Treviño, C.; Martínez-Suástegui, L.: Magnetohydrodynamic mixed convection and entropy generation analysis of Al2O3-water nanofluid past a confined circular cylinder. Int. J. Mech. Sci. 230, 107542 (2022) Sáchica, D.; Salcedo, E.; Treviño, C.; Martínez-Suástegui, L.: Magnetohydrodynamic mixed convection and entropy generation analysis of Al2O3-water nanofluid past a confined circular cylinder. Int. J. Mech. Sci. 230, 107542 (2022)
38.
Zurück zum Zitat Rashidi, S.; Bovand, M.; Esfahani, J. A.; Öztop, H. F.; Masoodi, R.: Control of wake structure behind a square cylinder by Magnetohydrodynamics. J. Fluids Eng. 137, (2015) Rashidi, S.; Bovand, M.; Esfahani, J. A.; Öztop, H. F.; Masoodi, R.: Control of wake structure behind a square cylinder by Magnetohydrodynamics. J. Fluids Eng. 137, (2015)
39.
Zurück zum Zitat Chatterjee, D.; Chatterjee, K.: Wall-bounded flow and heat transfer around a circular cylinder at low Reynolds and Hartmann numbers. Heat Transf. Asian Res. 42, 133–150 (2012) Chatterjee, D.; Chatterjee, K.: Wall-bounded flow and heat transfer around a circular cylinder at low Reynolds and Hartmann numbers. Heat Transf. Asian Res. 42, 133–150 (2012)
40.
Zurück zum Zitat Farahi, S.; Hossein, N.: Investigation of magnetohydrodynamics flow and heat transfer in the presence of a confined square cylinder using SM82 equations. Therm. Sci. 21, 889–899 (2017) Farahi, S.; Hossein, N.: Investigation of magnetohydrodynamics flow and heat transfer in the presence of a confined square cylinder using SM82 equations. Therm. Sci. 21, 889–899 (2017)
41.
Zurück zum Zitat Singha, S.; Sinhamahapatra, K.P.: Control of vortex shedding from a circular cylinder using imposed transverse magnetic field. Int. J. Numer. Methods Heat Fluid Flow 21, 32–45 (2011) Singha, S.; Sinhamahapatra, K.P.: Control of vortex shedding from a circular cylinder using imposed transverse magnetic field. Int. J. Numer. Methods Heat Fluid Flow 21, 32–45 (2011)
42.
Zurück zum Zitat Rezaie, M. R.; Norouzi, M.: Numerical investigation of MHD flow of non-newtonian fluid over confined circular cylinder: a lattice Boltzmann approach. J. Braz. Soc. Mech. Sci. Eng. 40, (2018) Rezaie, M. R.; Norouzi, M.: Numerical investigation of MHD flow of non-newtonian fluid over confined circular cylinder: a lattice Boltzmann approach. J. Braz. Soc. Mech. Sci. Eng. 40, (2018)
43.
Zurück zum Zitat Sheikholislami, M.; Rashidi, M.M.; Ganji, D.D.: Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Comput. Methods Appl. Mech. Eng. 294, 299–312 (2015)MATH Sheikholislami, M.; Rashidi, M.M.; Ganji, D.D.: Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Comput. Methods Appl. Mech. Eng. 294, 299–312 (2015)MATH
44.
Zurück zum Zitat Barzegar Gerdroodbary, M.; Sheikholeslami, M.; Mousavi, S.V.; Anazadehsayed, A.; Moradi, R.: The influence of non-uniform magnetic field on heat transfer intensification of ferrofluid inside a T-junction. Chem. Eng. Process. Process Intensif. 123, 58–66 (2018) Barzegar Gerdroodbary, M.; Sheikholeslami, M.; Mousavi, S.V.; Anazadehsayed, A.; Moradi, R.: The influence of non-uniform magnetic field on heat transfer intensification of ferrofluid inside a T-junction. Chem. Eng. Process. Process Intensif. 123, 58–66 (2018)
45.
Zurück zum Zitat Malmir-Chegini, Y.; Amanifard, N.: Heat transfer enhancement inside semi-insulated horizontal pipe by controlling the secondary flow of oil-based ferro-fluid in the presence of non-uniform magnetic field: a general correlation for the Nusselt number. Appl. Therm. Eng. 159, 113839 (2019) Malmir-Chegini, Y.; Amanifard, N.: Heat transfer enhancement inside semi-insulated horizontal pipe by controlling the secondary flow of oil-based ferro-fluid in the presence of non-uniform magnetic field: a general correlation for the Nusselt number. Appl. Therm. Eng. 159, 113839 (2019)
46.
Zurück zum Zitat Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, M.; Ganji, D. D.: The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel. Eur. Phys. J. Plus 131, (2016) Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, M.; Ganji, D. D.: The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel. Eur. Phys. J. Plus 131, (2016)
47.
Zurück zum Zitat Larimi, M.M.; Ghanaat, A.; Ramiar, A.; Ranjbar, A.A.: Forced convection heat transfer in a channel under the influence of various non-uniform transverse magnetic field arrangements. Int. J. Mech. Sci. 118, 101–112 (2016) Larimi, M.M.; Ghanaat, A.; Ramiar, A.; Ranjbar, A.A.: Forced convection heat transfer in a channel under the influence of various non-uniform transverse magnetic field arrangements. Int. J. Mech. Sci. 118, 101–112 (2016)
48.
Zurück zum Zitat Sheikholeslami, M.; Vajravelu, K.: Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl. Math. Comput. 298, 272–282 (2017)MathSciNetMATH Sheikholeslami, M.; Vajravelu, K.: Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl. Math. Comput. 298, 272–282 (2017)MathSciNetMATH
49.
Zurück zum Zitat Hariri, S.; Mokhtari, M.; Gerdroodbary; M. B.; Fallah, K.: Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field. Eur. Phys. J. Plus. 132, (2017) Hariri, S.; Mokhtari, M.; Gerdroodbary; M. B.; Fallah, K.: Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field. Eur. Phys. J. Plus. 132, (2017)
50.
Zurück zum Zitat Izadi, M.; Maleki, N.M.; Pop, I.; Mehryan, S.A.M.: Natural convection of a hybrid nanofluid subjected to non-uniform magnetic field within porous medium including circular heater. Int. J. Numer. Methods Heat Fluid Flow 29(4), 1211–1231 (2019) Izadi, M.; Maleki, N.M.; Pop, I.; Mehryan, S.A.M.: Natural convection of a hybrid nanofluid subjected to non-uniform magnetic field within porous medium including circular heater. Int. J. Numer. Methods Heat Fluid Flow 29(4), 1211–1231 (2019)
51.
Zurück zum Zitat Ghasemian, M.; Najafian Ashrafi, Z.; Goharkhah, M.; Ashjaee, M.: Heat transfer characteristics of fe3o4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields. J. Magn. Magn. Mater. 381, 158–167 (2015) Ghasemian, M.; Najafian Ashrafi, Z.; Goharkhah, M.; Ashjaee, M.: Heat transfer characteristics of fe3o4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields. J. Magn. Magn. Mater. 381, 158–167 (2015)
52.
Zurück zum Zitat Akbarzadeh, M.; Rashidi, S.; Esfahani, J.A.: Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a Wavy channel. Appl. Therm. Eng. 116, 278–291 (2017) Akbarzadeh, M.; Rashidi, S.; Esfahani, J.A.: Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a Wavy channel. Appl. Therm. Eng. 116, 278–291 (2017)
53.
Zurück zum Zitat Hamzah, H.; Canpolat, C.; Jasim, L.M.; Sahin, B.: Hydrothermal index and entropy generation of a heated cylinder placed between two oppositely rotating cylinders in a vented cavity. Int. J. Mech. Sci. 201, 106465 (2021) Hamzah, H.; Canpolat, C.; Jasim, L.M.; Sahin, B.: Hydrothermal index and entropy generation of a heated cylinder placed between two oppositely rotating cylinders in a vented cavity. Int. J. Mech. Sci. 201, 106465 (2021)
54.
Zurück zum Zitat Zontul, H.; Hamzah, H.; Sahin, B.: Impact of periodic magnetic source on natural convection and entropy generation of ferrofluids in a baffled cavity. Int. J. Numer. Methods Heat Fluid Flow. 31, 3547–3575 (2021) Zontul, H.; Hamzah, H.; Sahin, B.: Impact of periodic magnetic source on natural convection and entropy generation of ferrofluids in a baffled cavity. Int. J. Numer. Methods Heat Fluid Flow. 31, 3547–3575 (2021)
55.
Zurück zum Zitat Ali, F.H.; Hamzah, H.K.; Egab, K.; Arıcı, M.; Shahsavar, A.: Non-newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. Int. J. Mech. Sci. 186, 105887 (2020) Ali, F.H.; Hamzah, H.K.; Egab, K.; Arıcı, M.; Shahsavar, A.: Non-newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. Int. J. Mech. Sci. 186, 105887 (2020)
56.
Zurück zum Zitat Selimefendigil, F.; Öztop, H.F.: Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int. J. Mech. Sci. 169, 105104 (2020) Selimefendigil, F.; Öztop, H.F.: Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int. J. Mech. Sci. 169, 105104 (2020)
57.
Zurück zum Zitat Kefayati, G.H.R.: Simulation of heat transfer and entropy generation of MHD natural convection of non-newtonian nanofluid in an enclosure. Int. J. Heat Mass Transf. 92, 1066–1089 (2016) Kefayati, G.H.R.: Simulation of heat transfer and entropy generation of MHD natural convection of non-newtonian nanofluid in an enclosure. Int. J. Heat Mass Transf. 92, 1066–1089 (2016)
58.
Zurück zum Zitat Singha, S.; Sinhamahapatra, K.P.; Mukherjea, S.K.: Control of vortex shedding from a bluff body using imposed magnetic field. J. Fluids Eng. 129, 517–523 (2006) Singha, S.; Sinhamahapatra, K.P.; Mukherjea, S.K.: Control of vortex shedding from a bluff body using imposed magnetic field. J. Fluids Eng. 129, 517–523 (2006)
59.
Zurück zum Zitat Grigoriadis, D.G.E.; Sarris, I.E.; Kassinos, S.C.: MHD flow past a circular cylinder using the immersed boundary method. Comput. Fluids 39, 345–358 (2010)MATH Grigoriadis, D.G.E.; Sarris, I.E.; Kassinos, S.C.: MHD flow past a circular cylinder using the immersed boundary method. Comput. Fluids 39, 345–358 (2010)MATH
60.
Zurück zum Zitat Sekhar, T.V.S.; Sivakumar, R.; Ravi Kumar, T.V.R.: Flow around a circular cylinder in an external magnetic field at high Reynolds numbers. Int. J. Numer. Methods Heat Fluid Flow 16, 740–759 (2006)MathSciNetMATH Sekhar, T.V.S.; Sivakumar, R.; Ravi Kumar, T.V.R.: Flow around a circular cylinder in an external magnetic field at high Reynolds numbers. Int. J. Numer. Methods Heat Fluid Flow 16, 740–759 (2006)MathSciNetMATH
61.
Zurück zum Zitat Meyer, J.P.; McKrell, T.J.; Grote, K.: The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes. Int. J. Heat Mass Transf. 58, 597–609 (2013) Meyer, J.P.; McKrell, T.J.; Grote, K.: The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes. Int. J. Heat Mass Transf. 58, 597–609 (2013)
62.
Zurück zum Zitat Syam Sundar, L.; Naik, M.T.; Sharma, K.V.; Singh, M.K.; Siva Reddy, T.C.: Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp. Thermal Fluid Sci. 37, 65–71 (2012) Syam Sundar, L.; Naik, M.T.; Sharma, K.V.; Singh, M.K.; Siva Reddy, T.C.: Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp. Thermal Fluid Sci. 37, 65–71 (2012)
Metadaten
Titel
Numerical Investigation of Magnetohydrodynamic Forced Convection and Entropy Production of Ferrofluid Around a Confined Cylinder Using Wire Magnetic Sources
verfasst von
Sergen Tumse
Harun Zontul
Hudhaifa Hamzah
Besir Sahin
Publikationsdatum
12.12.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07470-5

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.