Skip to main content
Erschienen in: Quantum Information Processing 11/2020

01.11.2020

A comparative study of system size dependence of the effect of non-unitary channels on different classes of quantum states

verfasst von: Geetu Narang, Shruti Dogra, Arvind

Erschienen in: Quantum Information Processing | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate the effect of different types of non-unitary quantum channels on multiqubit quantum systems. For an n-qubit system and a particular channel, in order to draw unbiased conclusions about the system as a whole as opposed to specific states, we evolve a large number of randomly generated states under the given channel. We increase the number of qubits and study the effect of system size on the decoherence processes. The entire scheme is repeated for various types of environments which include dephasing channel, depolarizing channel, collective dephasing channel and zero temperature bath. Non-unitary channels representing the environments are modeled via their Kraus operator decomposition or master equation approach. Further, for a given n we restrict ourselves to the study of particular subclasses of entangled states, namely the GHZ-type and W-type states. We generate random states within these classes and study the class behaviors under different quantum channels for various values of n.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Quantum Information, Quantum Computation, Cryptography. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Quantum Information, Quantum Computation, Cryptography. Cambridge University Press, Cambridge (2000)MATH
2.
Zurück zum Zitat Zeilinger, A., Bouwmeester, D.: Ekert, Artur: The Physics of Quantum Information. Springer, Berlin (2000) Zeilinger, A., Bouwmeester, D.: Ekert, Artur: The Physics of Quantum Information. Springer, Berlin (2000)
3.
Zurück zum Zitat Redfield, A.G.: On the theory of relaxation processes. IBM J. Res. Dev. 1, 19–31 (1957)CrossRef Redfield, A.G.: On the theory of relaxation processes. IBM J. Res. Dev. 1, 19–31 (1957)CrossRef
4.
Zurück zum Zitat Feynman, R.P., Vernon, F.L.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963)MathSciNetCrossRefADS Feynman, R.P., Vernon, F.L.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963)MathSciNetCrossRefADS
5.
Zurück zum Zitat Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Phys. A: Stat. Mech. Appl. 121, 587–616 (1983)MathSciNetCrossRef Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Phys. A: Stat. Mech. Appl. 121, 587–616 (1983)MathSciNetCrossRef
6.
Zurück zum Zitat Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics, 3rd edn. Springer, Berlin, Heidelberg (2004)MATH Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics, 3rd edn. Springer, Berlin, Heidelberg (2004)MATH
7.
Zurück zum Zitat Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)CrossRef Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)CrossRef
8.
Zurück zum Zitat Mooij, J.E., Orlando, T.P., Levitov, L., Tian, L., van der Wal, C.H., Lloyd, S.: Josehpson persistent-current qubit. Science 285, 1036–1039 (1999)CrossRef Mooij, J.E., Orlando, T.P., Levitov, L., Tian, L., van der Wal, C.H., Lloyd, S.: Josehpson persistent-current qubit. Science 285, 1036–1039 (1999)CrossRef
9.
Zurück zum Zitat Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)CrossRefADS Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)CrossRefADS
10.
Zurück zum Zitat Cirac, J.I., Zoller, P.: Quantum computation with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)CrossRefADS Cirac, J.I., Zoller, P.: Quantum computation with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)CrossRefADS
11.
13.
Zurück zum Zitat Jones, J.A.: Quantum computing with NMR. Prog. Nucl. Magn. Reson. Spectrosc. 59, 91–120 (2011)CrossRef Jones, J.A.: Quantum computing with NMR. Prog. Nucl. Magn. Reson. Spectrosc. 59, 91–120 (2011)CrossRef
14.
Zurück zum Zitat Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OBrien, J.L.: Quantum computers. Nature 464, 45 (2010)CrossRefADS Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OBrien, J.L.: Quantum computers. Nature 464, 45 (2010)CrossRefADS
15.
Zurück zum Zitat Barreiro, J.T., Schindler, P., Ghne, O., Monz, T., Chwalla, M., Roos, C.F., Hennrich, M., Blatt, R.: Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010)CrossRef Barreiro, J.T., Schindler, P., Ghne, O., Monz, T., Chwalla, M., Roos, C.F., Hennrich, M., Blatt, R.: Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943–946 (2010)CrossRef
16.
Zurück zum Zitat Liu, Z., Lyyra, H., Sun, Y., et al.: Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities. Nat. Commun. 9, 3453 (2018) Liu, Z., Lyyra, H., Sun, Y., et al.: Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities. Nat. Commun. 9, 3453 (2018)
17.
Zurück zum Zitat Burnett, J.J., Bengtsson, A., Scigliuzzo, M., Niepce, D., Kudra, M., Delsing, P., Bylander, J.: Decoherence benchmarking of superconducting qubits. NPJ Quant. Inf. 5, 54 (2019)CrossRef Burnett, J.J., Bengtsson, A., Scigliuzzo, M., Niepce, D., Kudra, M., Delsing, P., Bylander, J.: Decoherence benchmarking of superconducting qubits. NPJ Quant. Inf. 5, 54 (2019)CrossRef
18.
Zurück zum Zitat Ficheux, Q., Jezouin, S., Leghtas, Z., Huard, B.: Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing. Nat. Commun. 9, 1926 (2018)CrossRefADS Ficheux, Q., Jezouin, S., Leghtas, Z., Huard, B.: Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing. Nat. Commun. 9, 1926 (2018)CrossRefADS
19.
Zurück zum Zitat Singh, H., Arvind, Dorai, K.: Using a lindbladian approach to model decoherence in two coupled nuclear spins via correlated phase-damping and amplitude damping noise channels (2020). arXiv:2007.12972 Singh, H., Arvind, Dorai, K.: Using a lindbladian approach to model decoherence in two coupled nuclear spins via correlated phase-damping and amplitude damping noise channels (2020). arXiv:​2007.​12972
20.
Zurück zum Zitat Singh, H., Arvind, Dorai, K.: Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Phys. Rev. A 97, 022302 (2018) Singh, H., Arvind, Dorai, K.: Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Phys. Rev. A 97, 022302 (2018)
21.
Zurück zum Zitat Singh, H., Arvind, Dorai, K.: Experimentally freezing quantum discord in a dephasing environment using dynamical decoupling. EPL (Europhys. Lett.) 118, 50001 (2017) Singh, H., Arvind, Dorai, K.: Experimentally freezing quantum discord in a dephasing environment using dynamical decoupling. EPL (Europhys. Lett.) 118, 50001 (2017)
22.
Zurück zum Zitat Gühne, O., Bodoky, F., Blaauboer, M.: Multiparticle entanglement under the influence of decoherence. Phys. Rev. A 78, 060301 (2008)CrossRefADS Gühne, O., Bodoky, F., Blaauboer, M.: Multiparticle entanglement under the influence of decoherence. Phys. Rev. A 78, 060301 (2008)CrossRefADS
23.
Zurück zum Zitat Borras, A., Majtey, A.P., Plastino, A.R., Casas, M., Plastino, A.: Robustness of highly entangled multiqubit states under decoherence. Phys. Rev. A 79, 022108 (2009)CrossRefADS Borras, A., Majtey, A.P., Plastino, A.R., Casas, M., Plastino, A.: Robustness of highly entangled multiqubit states under decoherence. Phys. Rev. A 79, 022108 (2009)CrossRefADS
24.
Zurück zum Zitat Aolita, L., Cavalcanti, D., Acín, A., Salles, A., Tiersch, M., Buchleitner, A., de Melo, F.: Scalability of Greenberger–Horne–Zeilinger and random-state entanglement in the presence of decoherence. Phys. Rev. A 79, 032322 (2009)CrossRefADS Aolita, L., Cavalcanti, D., Acín, A., Salles, A., Tiersch, M., Buchleitner, A., de Melo, F.: Scalability of Greenberger–Horne–Zeilinger and random-state entanglement in the presence of decoherence. Phys. Rev. A 79, 032322 (2009)CrossRefADS
25.
Zurück zum Zitat Berrada, K., Eleuch, H., Hassouni, Y.: Asymptotic dynamics of quantum discord in open quantum systems. J. Phys. B: Atom., Mol. Opt. Phys. 44, 145503 (2011)CrossRefADS Berrada, K., Eleuch, H., Hassouni, Y.: Asymptotic dynamics of quantum discord in open quantum systems. J. Phys. B: Atom., Mol. Opt. Phys. 44, 145503 (2011)CrossRefADS
26.
Zurück zum Zitat Ali, M., Gühne, O.: Robustness of multiparticle entanglement: specific entanglement classes and random states. J. Phys. B 47, 055503 (2014)CrossRefADS Ali, M., Gühne, O.: Robustness of multiparticle entanglement: specific entanglement classes and random states. J. Phys. B 47, 055503 (2014)CrossRefADS
27.
Zurück zum Zitat Földi, P., Benedict, M.G., Czirják, A., Molnár, B.: Decoherence of wave packets in an anharmonic oscillator. Phys. Rev. A 67, 032104 (2003)CrossRefADS Földi, P., Benedict, M.G., Czirják, A., Molnár, B.: Decoherence of wave packets in an anharmonic oscillator. Phys. Rev. A 67, 032104 (2003)CrossRefADS
28.
Zurück zum Zitat Kaur, M., Arora, B., Arvind, A.: Effect of dissipative environment on collapses and revivals of a non-linear quantum oscillator. Eur. Phys. J. D 72, 136 (2018)CrossRefADS Kaur, M., Arora, B., Arvind, A.: Effect of dissipative environment on collapses and revivals of a non-linear quantum oscillator. Eur. Phys. J. D 72, 136 (2018)CrossRefADS
29.
Zurück zum Zitat Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin, Heidelberg (2003)CrossRef Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin, Heidelberg (2003)CrossRef
31.
Zurück zum Zitat Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, Quantum Inforamtion, Quantum Computation, Cryptography, vol. 190. Springer, New York (1983) Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, Quantum Inforamtion, Quantum Computation, Cryptography, vol. 190. Springer, New York (1983)
32.
Zurück zum Zitat Arsenijević, M., Jeknić-Dugić, J., Dugić, M.: Kraus operators for a pair of interacting qubits: a case study. Braz. J. Phys. 48, 242–248 (2018)CrossRefADS Arsenijević, M., Jeknić-Dugić, J., Dugić, M.: Kraus operators for a pair of interacting qubits: a case study. Braz. J. Phys. 48, 242–248 (2018)CrossRefADS
34.
Zurück zum Zitat Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of \(N\)-level systems. J. Math. Phys. 17, 821–825 (1976)MathSciNetCrossRef Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of \(N\)-level systems. J. Math. Phys. 17, 821–825 (1976)MathSciNetCrossRef
35.
Zurück zum Zitat Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)CrossRefADS Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)CrossRefADS
36.
Zurück zum Zitat Mintert, F., Carvalho, A.R.R., Kus, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys. Rep. 415, 207–259 (2005)MathSciNetCrossRefADS Mintert, F., Carvalho, A.R.R., Kus, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys. Rep. 415, 207–259 (2005)MathSciNetCrossRefADS
38.
Zurück zum Zitat Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307 (2007)CrossRefADS Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307 (2007)CrossRefADS
Metadaten
Titel
A comparative study of system size dependence of the effect of non-unitary channels on different classes of quantum states
verfasst von
Geetu Narang
Shruti Dogra
Arvind
Publikationsdatum
01.11.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 11/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02904-1

Weitere Artikel der Ausgabe 11/2020

Quantum Information Processing 11/2020 Zur Ausgabe

Neuer Inhalt