Skip to main content
Erschienen in: Experimental Mechanics 4/2021

17.03.2021 | Research paper

A Contactless Approach to Monitor Rail Vibrations

verfasst von: A. Enshaeian, L. Luan, M. Belding, H. Sun, P. Rizzo

Erschienen in: Experimental Mechanics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

Continuous welded rails (CWR) are subjected to thermal effects that may lead to buckling or fracture during warm or cold seasons, respectively. The modal characteristics (frequency and mode shapes) of CWR may reveal important information about the thermal stress that can be used to prevent rail failures.

Objective

The primary objective of this study is to prove a contactless method to monitor the vibration and to extract the modal characteristics of rails using a high-speed camera and advanced image processing. This study is the first step towards a general noninvasive monitoring paradigm aimed at measuring axial stress in CWR.

Methods

To prove the principles of the proposed paradigm, a finite element model of an unrestrained rail segment under varying length, boundary conditions, and axial stresses was formulated. The results of the model were then used to interpret the experimental results relative to a 2.4 m-long rail subjected to compressive loading–unloading cycles. During the experiment, the rail was subjected to the impact of an instrumented hammer and the triggered vibration was recorded with a high-speed camera. The videos were then processed using the phase-based displacement extraction, motion magnification, as well as dynamic mode decomposition techniques to extract the modal characteristics of the specimen.

Results

The results show that the frequencies extracted from the images matched well those obtained with two conventional accelerometers bonded to the rail while the mode shapes extracted from the videos matched those predicted numerically. Additionally, the numerical analysis enabled the interpretation of some unexpected experimental results.

Conclusions

The results presented here proved that the proposed method to infer axial stress in CWR requires proper modeling in order to link the modal characteristics of the rails to the axial stress. In the future, the finite element formulation presented here will be expanded to model CWR under given cross-ties and fasteners conditions in order to link the modal characteristics of the rail of interest to its axial stress.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Wegner A (2007) Prevention of track buckling and rail fracture by non-destructive testing of the neutral temperature in CW-rails. Proceedings International Heavy Haul Conference, Sweden, pp. 557–564 Wegner A (2007) Prevention of track buckling and rail fracture by non-destructive testing of the neutral temperature in CW-rails. Proceedings International Heavy Haul Conference, Sweden, pp. 557–564
5.
Zurück zum Zitat Zhu X, Lanza di Scalea F (2016) Sensitivity to axial stress of electro-mechanical impedance measurements. Exp Mech 56(9):1599–1610CrossRef Zhu X, Lanza di Scalea F (2016) Sensitivity to axial stress of electro-mechanical impedance measurements. Exp Mech 56(9):1599–1610CrossRef
6.
Zurück zum Zitat Phillips R, Lanza di Scalea F, Zhu X (2012) The influence of stress on Electro-mechanical impedance measurements in rail steel. Mater Eval 70(10):1213–1218 Phillips R, Lanza di Scalea F, Zhu X (2012) The influence of stress on Electro-mechanical impedance measurements in rail steel. Mater Eval 70(10):1213–1218
7.
Zurück zum Zitat Hurlebaus S (2011) Determination of longitudinal stress in rails. Safety IDEA Project 15. Trans Res Board 01363276 Hurlebaus S (2011) Determination of longitudinal stress in rails. Safety IDEA Project 15. Trans Res Board 01363276
8.
Zurück zum Zitat Nucera C, Lanza di Scalea F (2014a) Nonlinear wave propagation in constrained solids subjected to thermal loads. J Sound Vib 333(2):541–554CrossRef Nucera C, Lanza di Scalea F (2014a) Nonlinear wave propagation in constrained solids subjected to thermal loads. J Sound Vib 333(2):541–554CrossRef
9.
Zurück zum Zitat Nucera C, Lanza di Scalea F (2014b) Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves. J Acoust Soc Am 136(5):2561–2574CrossRef Nucera C, Lanza di Scalea F (2014b) Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves. J Acoust Soc Am 136(5):2561–2574CrossRef
10.
Zurück zum Zitat Nucera C, Phillips R, Lanza di Scalea F, Fateh M, Carr G (2013) RAIL-NT System for the in-situ measurement of neutral temperature in CWR: results from laboratory and field test. J Transp Res Board 01470560(13–3511):13 Nucera C, Phillips R, Lanza di Scalea F, Fateh M, Carr G (2013) RAIL-NT System for the in-situ measurement of neutral temperature in CWR: results from laboratory and field test. J Transp Res Board 01470560(13–3511):13
11.
Zurück zum Zitat Lanza di Scalea F, Nucera C, (2018) Nonlinear ultrasonic testing for non-destructive measurement of longitudinal thermal stresses in solids. US Patents, No. US20150377836A1 Lanza di Scalea F, Nucera C, (2018) Nonlinear ultrasonic testing for non-destructive measurement of longitudinal thermal stresses in solids. US Patents, No. US20150377836A1
12.
Zurück zum Zitat Bagheri A, La Malfa RE, Rizzo P, Al-Nazer L, Giambanco G (2015) On the use of l-shaped granular chains for the assessment of thermal stress in slender structures. Exp Mech 55(3):543–558CrossRef Bagheri A, La Malfa RE, Rizzo P, Al-Nazer L, Giambanco G (2015) On the use of l-shaped granular chains for the assessment of thermal stress in slender structures. Exp Mech 55(3):543–558CrossRef
13.
Zurück zum Zitat Bagheri A, La Malfa RE, Rizzo P, Al-Nazer L (2016) On the coupling dynamics between thermally stressed beams and granular chains. Arch of Appl Mech 86(3):541–556CrossRef Bagheri A, La Malfa RE, Rizzo P, Al-Nazer L (2016) On the coupling dynamics between thermally stressed beams and granular chains. Arch of Appl Mech 86(3):541–556CrossRef
14.
Zurück zum Zitat Bagheri A, Rizzo P, Al-Nazer L (2016) A numerical study on the optimization of a granular medium to infer the axial stress in slender structures. Mech Adv Mater Struct 23(10):1131–1143CrossRef Bagheri A, Rizzo P, Al-Nazer L (2016) A numerical study on the optimization of a granular medium to infer the axial stress in slender structures. Mech Adv Mater Struct 23(10):1131–1143CrossRef
15.
Zurück zum Zitat Nasrollahi A, Rizzo P (2018) Axial stress determination using highly nonlinear solitary waves. J Acoust Soc Am 144(4):2201–2212CrossRef Nasrollahi A, Rizzo P (2018) Axial stress determination using highly nonlinear solitary waves. J Acoust Soc Am 144(4):2201–2212CrossRef
17.
Zurück zum Zitat Feng D, Feng MQ (2016) Vision-based multipoint displacement measurement for structural health monitoring. Struct Control Health 23(5):876–890CrossRef Feng D, Feng MQ (2016) Vision-based multipoint displacement measurement for structural health monitoring. Struct Control Health 23(5):876–890CrossRef
18.
Zurück zum Zitat Ribeiro D, Calçada R, Ferreira J, Martins T (2014) Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Eng Struct 75:164–180CrossRef Ribeiro D, Calçada R, Ferreira J, Martins T (2014) Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Eng Struct 75:164–180CrossRef
19.
Zurück zum Zitat Feng D, Feng MQ (2017) Experimental validation of cost-effective vision-based structural health monitoring. Mech Syst Signal Process 88:199–211CrossRef Feng D, Feng MQ (2017) Experimental validation of cost-effective vision-based structural health monitoring. Mech Syst Signal Process 88:199–211CrossRef
20.
Zurück zum Zitat Chen JG, Wadhwa N, Cha YJ, Durand F, Freeman WT, Büyüköztürk O (2015) Modal identification of simple structures with high-speed video using motion magnification. J Sound Vib 345(9):58–71CrossRef Chen JG, Wadhwa N, Cha YJ, Durand F, Freeman WT, Büyüköztürk O (2015) Modal identification of simple structures with high-speed video using motion magnification. J Sound Vib 345(9):58–71CrossRef
21.
Zurück zum Zitat Wadhwa N, Rubinstein M, Durand F, Freeman WT (2013) Phase-based video motion processing. ACM Trans Graph 32(4):1–10CrossRef Wadhwa N, Rubinstein M, Durand F, Freeman WT (2013) Phase-based video motion processing. ACM Trans Graph 32(4):1–10CrossRef
22.
Zurück zum Zitat Chen JG, Davis A, Wadhwa N, Durand F, Freeman WT, Büyüköztürk O (2017) Video camera–based vibration measurement for civil infrastructure applications. J Infrastruct Syst 23(3):B4016013CrossRef Chen JG, Davis A, Wadhwa N, Durand F, Freeman WT, Büyüköztürk O (2017) Video camera–based vibration measurement for civil infrastructure applications. J Infrastruct Syst 23(3):B4016013CrossRef
23.
Zurück zum Zitat Chen JG, Adams TM, Sun H, Bell ES, Büyüköztürk O (2018) Camera-based vibration measurement of the World War I memorial bridge in Portsmouth New Hampshire. J Struct Eng 144(11):04018207CrossRef Chen JG, Adams TM, Sun H, Bell ES, Büyüköztürk O (2018) Camera-based vibration measurement of the World War I memorial bridge in Portsmouth New Hampshire. J Struct Eng 144(11):04018207CrossRef
24.
Zurück zum Zitat Sarrafi A, Zhu Mao CN, Poozesh P (2018) Vibration-based damage detection in wind turbine blades using phase-based motion estimation and motion magnification. J Sound Vib 421:300–318CrossRef Sarrafi A, Zhu Mao CN, Poozesh P (2018) Vibration-based damage detection in wind turbine blades using phase-based motion estimation and motion magnification. J Sound Vib 421:300–318CrossRef
26.
Zurück zum Zitat Wu HY, Rubinstein M, Shih E, Guttag J, Durand F, Freeman W (2012) Eulerian Video Magnification for Revealing Subtle Changes in the World. ACM Trans Graph 31(4):1–8CrossRef Wu HY, Rubinstein M, Shih E, Guttag J, Durand F, Freeman W (2012) Eulerian Video Magnification for Revealing Subtle Changes in the World. ACM Trans Graph 31(4):1–8CrossRef
27.
Zurück zum Zitat Simoncelli E P, Freeman W T (1995) The steerable pyramid: a flexible architecture for multi scale derivative computation, Proceedings of the1995 International Conference on Image Processing (ICIP 95), Vol.3, IEEE Comput Soc, Washington DC, pp 444–447 Simoncelli E P, Freeman W T (1995) The steerable pyramid: a flexible architecture for multi scale derivative computation, Proceedings of the1995 International Conference on Image Processing (ICIP 95), Vol.3, IEEE Comput Soc, Washington DC, pp 444–447
28.
29.
Zurück zum Zitat Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN (2014) On dynamic mode decomposition: Theory and applications. J Comput Dyn 1(2):391–421MathSciNetCrossRef Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN (2014) On dynamic mode decomposition: Theory and applications. J Comput Dyn 1(2):391–421MathSciNetCrossRef
30.
Zurück zum Zitat Kerr AD (1978a) Analysis of thermal track buckling in the lateral plane. Acta Mech 30(1–2):17–50CrossRef Kerr AD (1978a) Analysis of thermal track buckling in the lateral plane. Acta Mech 30(1–2):17–50CrossRef
31.
Zurück zum Zitat Donley MG, Kerr AD (1987) Thermal buckling of curved railroad tracks. Int J Non-Linear Mech 22(3):175–192CrossRef Donley MG, Kerr AD (1987) Thermal buckling of curved railroad tracks. Int J Non-Linear Mech 22(3):175–192CrossRef
32.
Zurück zum Zitat Kerr AD (1978b) Lateral buckling of railroad tracks due to constrained thermal expansions—a critical survey. Elsevier, Railr Track Mech Technol, pp 141–169 Kerr AD (1978b) Lateral buckling of railroad tracks due to constrained thermal expansions—a critical survey. Elsevier, Railr Track Mech Technol, pp 141–169
33.
Zurück zum Zitat Lim NH, Park NH, Kang YJ (2003a) Stability of continuous welded rail track. Compu Struct 81(22–23):2219–2236CrossRef Lim NH, Park NH, Kang YJ (2003a) Stability of continuous welded rail track. Compu Struct 81(22–23):2219–2236CrossRef
34.
Zurück zum Zitat Kerr AD (1980) An improved analysis for thermal track buckling. Int J Non-Linear Mech 15(2):99–114CrossRef Kerr AD (1980) An improved analysis for thermal track buckling. Int J Non-Linear Mech 15(2):99–114CrossRef
35.
Zurück zum Zitat Kish A (2011) On the fundamentals of track lateral resistance. American Railway Engineering and Maintenance of Way Association (AREMA) Kish A (2011) On the fundamentals of track lateral resistance. American Railway Engineering and Maintenance of Way Association (AREMA)
36.
Zurück zum Zitat Martínez IN, Sanchis IV, Fernández PM, Franco RI (2015) Analytical model for predicting the buckling load of continuous welded rail tracks. Proceedings of the Institution of Mechanical Engineers, Part F, J Rail Rapid Transit 229(5):542–552CrossRef Martínez IN, Sanchis IV, Fernández PM, Franco RI (2015) Analytical model for predicting the buckling load of continuous welded rail tracks. Proceedings of the Institution of Mechanical Engineers, Part F, J Rail Rapid Transit 229(5):542–552CrossRef
37.
Zurück zum Zitat Lim NH, Park NH, Kang YJ (2003b) Stability of continuous welded rail track. Comput Struct 81(22–23):2219–2236CrossRef Lim NH, Park NH, Kang YJ (2003b) Stability of continuous welded rail track. Comput Struct 81(22–23):2219–2236CrossRef
38.
Zurück zum Zitat Kostovasilis D, Thompson DJ, Hussein MFM (2017) A semi-analytical beam model for the vibration of railway tracks. J Sound Vib 393:321–337CrossRef Kostovasilis D, Thompson DJ, Hussein MFM (2017) A semi-analytical beam model for the vibration of railway tracks. J Sound Vib 393:321–337CrossRef
39.
Zurück zum Zitat Livingston T, Beliveau JG, Huston DR (1995) Estimation of axial load in prismatic members using flexural vibrations. J Sound Vib 5:899–908CrossRef Livingston T, Beliveau JG, Huston DR (1995) Estimation of axial load in prismatic members using flexural vibrations. J Sound Vib 5:899–908CrossRef
40.
Zurück zum Zitat Kish A, Samavedam G (2013) Track Buckling Prevention: Theory, Safety Concepts, and Applications. Final Report, DOT/ FRA/ORD-13/16 Kish A, Samavedam G (2013) Track Buckling Prevention: Theory, Safety Concepts, and Applications. Final Report, DOT/ FRA/ORD-13/16
41.
Zurück zum Zitat Bayon A, Gascon F, Medina R, Nieves FJ, Salazar FJ (2012) On the flexural vibration of cylinders under axial loads: Numerical and experimental stusty. J Sound Vib 331:2315–2333CrossRef Bayon A, Gascon F, Medina R, Nieves FJ, Salazar FJ (2012) On the flexural vibration of cylinders under axial loads: Numerical and experimental stusty. J Sound Vib 331:2315–2333CrossRef
Metadaten
Titel
A Contactless Approach to Monitor Rail Vibrations
verfasst von
A. Enshaeian
L. Luan
M. Belding
H. Sun
P. Rizzo
Publikationsdatum
17.03.2021
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 4/2021
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-021-00691-z

Weitere Artikel der Ausgabe 4/2021

Experimental Mechanics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.