Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 10/2019

09.05.2019 | Original Paper

A Coupling Model of Distinct Lattice Spring Model and Lattice Boltzmann Method for Hydraulic Fracturing

verfasst von: Chao Jiang, Gao-Feng Zhao

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the distinct lattice spring model (DLSM) and the lattice Boltzmann method (LBM) are coupled together to simulate hydraulic fracturing problems. As the DLSM and LBM are both lattice modelling methods, the lattice meshes in these two systems are simply overlapped, which results in the same resolution in both the DLSM and LBM. The momentum exchange bounce-back algorithm is used to evaluate the forces exerted on the solid particles. Moreover, the calculation step in the LBM and DLSM is synchronised for prompt updates of fluid–solid interactions. The coupled model is further validated through a series of benchmarks. Finally, the coupled model shows its ability to simulate hydraulic fracturing in formations with complex discrete fracture networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44(5):739–757CrossRef Adachi J, Siebrits E, Peirce A, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44(5):739–757CrossRef
Zurück zum Zitat Braza M, Chassaing P, Ha MH (1986) Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J Fluid Mech 165(165):79–130CrossRef Braza M, Chassaing P, Ha MH (1986) Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J Fluid Mech 165(165):79–130CrossRef
Zurück zum Zitat Buxton GA, Verberg R, Jasnow D, Balazs AC (2005) Newtonian fluid meets an elastic solid: coupling lattice boltzmann and lattice-spring models. Physic Rev E. 71(5 Pt 2):056707CrossRef Buxton GA, Verberg R, Jasnow D, Balazs AC (2005) Newtonian fluid meets an elastic solid: coupling lattice boltzmann and lattice-spring models. Physic Rev E. 71(5 Pt 2):056707CrossRef
Zurück zum Zitat Chen S, Doolen GD (1998) Lattice boltzmann method for fluid flows. Annual Rev Fluid Mech 30(1):329–364CrossRef Chen S, Doolen GD (1998) Lattice boltzmann method for fluid flows. Annual Rev Fluid Mech 30(1):329–364CrossRef
Zurück zum Zitat Faxén H (1946) Forces exerted on a rigid cylinder in a viscous fluid between two parallel fixed planes. In: Proceedings of the Royal Swedish Academy of Engineering Sciences, vol 187, p 1 Faxén H (1946) Forces exerted on a rigid cylinder in a viscous fluid between two parallel fixed planes. In: Proceedings of the Royal Swedish Academy of Engineering Sciences, vol 187, p 1
Zurück zum Zitat Garcia M, Gutierrez J, Rueda N (2011) Fluid–structure coupling using lattice-Boltzmann and fixed-grid FEM. Finite Elem Analy Design 47(8):906–912CrossRef Garcia M, Gutierrez J, Rueda N (2011) Fluid–structure coupling using lattice-Boltzmann and fixed-grid FEM. Finite Elem Analy Design 47(8):906–912CrossRef
Zurück zum Zitat García-Salaberri PA, Gostick JT, Hwang G, Weber AZ, Vera M (2015) Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: effect of local saturation and application to macroscopic continuum models. J Power Sourc 296:440–453CrossRef García-Salaberri PA, Gostick JT, Hwang G, Weber AZ, Vera M (2015) Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: effect of local saturation and application to macroscopic continuum models. J Power Sourc 296:440–453CrossRef
Zurück zum Zitat Ghia U, Chia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48(3):387–411CrossRef Ghia U, Chia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48(3):387–411CrossRef
Zurück zum Zitat Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Month Not R Astron Soc 181(3):375–389CrossRef Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Month Not R Astron Soc 181(3):375–389CrossRef
Zurück zum Zitat Gui Y, Zhao GF (2015) Modelling of laboratory soil desiccation cracking using DLSM with a two-phase bond model. Comput Geotech 69:578–587CrossRef Gui Y, Zhao GF (2015) Modelling of laboratory soil desiccation cracking using DLSM with a two-phase bond model. Comput Geotech 69:578–587CrossRef
Zurück zum Zitat Han Y, Cundall PA (2011) Resolution sensitivity of momentum exchange and immersed boundary methods for solid–fluid interaction in the lattice Boltzmann method. Int J Numer Meth Fluids 67(3):314–327CrossRef Han Y, Cundall PA (2011) Resolution sensitivity of momentum exchange and immersed boundary methods for solid–fluid interaction in the lattice Boltzmann method. Int J Numer Meth Fluids 67(3):314–327CrossRef
Zurück zum Zitat Han Y, Cundall PA (2013) LBM–DEM modeling of fluid–solid interaction in porous media. Int J Numer Analyt Meth Geomech 37(10):1391–1407CrossRef Han Y, Cundall PA (2013) LBM–DEM modeling of fluid–solid interaction in porous media. Int J Numer Analyt Meth Geomech 37(10):1391–1407CrossRef
Zurück zum Zitat Holmes DW, Williams JR, Tilke P (2011) Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int J Numer Analyt Meth Geomech 35(4):419–437CrossRef Holmes DW, Williams JR, Tilke P (2011) Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int J Numer Analyt Meth Geomech 35(4):419–437CrossRef
Zurück zum Zitat Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL 19(3):155CrossRef Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL 19(3):155CrossRef
Zurück zum Zitat Hu HH, Joseph DD, Crochet MJ (1992) Direct simulation of fluid particle motions. Theor Comput Fluid Dyn 3(5):285–306CrossRef Hu HH, Joseph DD, Crochet MJ (1992) Direct simulation of fluid particle motions. Theor Comput Fluid Dyn 3(5):285–306CrossRef
Zurück zum Zitat Inamuro T (2012) Lattice Boltzmann methods for moving boundary flows. Fluid Dyn Res 44(2):024001CrossRef Inamuro T (2012) Lattice Boltzmann methods for moving boundary flows. Fluid Dyn Res 44(2):024001CrossRef
Zurück zum Zitat Ji C, Munjiza A, Williams JJR (2012) A novel iterative direct-forcing immersed boundary method and its finite volume applications. J Comput Phys 231(4):1797–1821CrossRef Ji C, Munjiza A, Williams JJR (2012) A novel iterative direct-forcing immersed boundary method and its finite volume applications. J Comput Phys 231(4):1797–1821CrossRef
Zurück zum Zitat Jiang C, Zhao G-F (2018) Implementation of a coupled plastic damage distinct lattice spring model for dynamic crack propagation in geomaterials. Int J Numer Analyt Meth Geomech 42(4):674–693CrossRef Jiang C, Zhao G-F (2018) Implementation of a coupled plastic damage distinct lattice spring model for dynamic crack propagation in geomaterials. Int J Numer Analyt Meth Geomech 42(4):674–693CrossRef
Zurück zum Zitat Jiang C, Zhao G-F, Zhu J, Zhao Y-X, Shen L (2016) Investigation of dynamic crack coalescence using a gypsum-like 3D printing material rock mech. Rock Eng 49(10):3983–3998CrossRef Jiang C, Zhao G-F, Zhu J, Zhao Y-X, Shen L (2016) Investigation of dynamic crack coalescence using a gypsum-like 3D printing material rock mech. Rock Eng 49(10):3983–3998CrossRef
Zurück zum Zitat Jiang C, Zhao G-F, Khalili N (2017) On crack propagation in brittle material using the distinct lattice spring model. Int J Solid Struct 118–119:1339–1351 Jiang C, Zhao G-F, Khalili N (2017) On crack propagation in brittle material using the distinct lattice spring model. Int J Solid Struct 118–119:1339–1351
Zurück zum Zitat Kazerani T, Zhao G-F, Zhao J (2010) Dynamic fracturing simulation of brittle material using the distinct lattice spring method with a full rate-dependent cohesive law. Rock Mech Rock Eng 43(6):717–726CrossRef Kazerani T, Zhao G-F, Zhao J (2010) Dynamic fracturing simulation of brittle material using the distinct lattice spring method with a full rate-dependent cohesive law. Rock Mech Rock Eng 43(6):717–726CrossRef
Zurück zum Zitat Kollmannsberger S, Geller S, Düster A, Tölke J, Sorger C, Krafczyk M, Rank E (2009) Fixed-grid fluid–structure interaction in two dimensions based on a partitioned lattice boltzmann and p-fem approach. Int J Numer Meth Eng 79(7):817–845CrossRef Kollmannsberger S, Geller S, Düster A, Tölke J, Sorger C, Krafczyk M, Rank E (2009) Fixed-grid fluid–structure interaction in two dimensions based on a partitioned lattice boltzmann and p-fem approach. Int J Numer Meth Eng 79(7):817–845CrossRef
Zurück zum Zitat Krause MJ, Heuveline V (2013) Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation. Comput Fluids 80(1):28–36CrossRef Krause MJ, Heuveline V (2013) Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation. Comput Fluids 80(1):28–36CrossRef
Zurück zum Zitat Kwon YW (2008) Coupling of lattice Boltzmann and finite element methods for fluid-structure interaction application. J Press Vessel Tech 130:011302CrossRef Kwon YW (2008) Coupling of lattice Boltzmann and finite element methods for fluid-structure interaction application. J Press Vessel Tech 130:011302CrossRef
Zurück zum Zitat Kwon YW, Jo JC (2008) 3D modeling of fluid-structure interaction with external flow using coupled LBM and FEM. J Press Vessel Tech 130(2):021301CrossRef Kwon YW, Jo JC (2008) 3D modeling of fluid-structure interaction with external flow using coupled LBM and FEM. J Press Vessel Tech 130(2):021301CrossRef
Zurück zum Zitat Leonardi A, Wittel FK, Mendoza M, Herrmann HJ (2014) Coupled DEM–LBM method for the free-surface simulation of heterogeneous suspensions. Comput Particle Mech 1(1):3–13CrossRef Leonardi A, Wittel FK, Mendoza M, Herrmann HJ (2014) Coupled DEM–LBM method for the free-surface simulation of heterogeneous suspensions. Comput Particle Mech 1(1):3–13CrossRef
Zurück zum Zitat Li JC, Li HB, Zhao J (2015) An improved equivalent viscoelastic medium method for wave propagation across layered rock masses. Int J Rock Mech Min Sci 73(1):62–69CrossRef Li JC, Li HB, Zhao J (2015) An improved equivalent viscoelastic medium method for wave propagation across layered rock masses. Int J Rock Mech Min Sci 73(1):62–69CrossRef
Zurück zum Zitat Li JC, Li NN, Li HB, Zhao J (2017) An SHPB test study on wave propagation across rock masses with different contact area ratios of joint. Int J Impact Eng 105:109–116CrossRef Li JC, Li NN, Li HB, Zhao J (2017) An SHPB test study on wave propagation across rock masses with different contact area ratios of joint. Int J Impact Eng 105:109–116CrossRef
Zurück zum Zitat Lisjak A, Grasselli G, Vietor T (2014) Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int J Rock Mech Min Sci 65:96–115CrossRef Lisjak A, Grasselli G, Vietor T (2014) Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int J Rock Mech Min Sci 65:96–115CrossRef
Zurück zum Zitat Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water Resour Res 43(4):244–247CrossRef Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water Resour Res 43(4):244–247CrossRef
Zurück zum Zitat Martel C, Iacono-marziano G (2015) Timescales of bubble coalescence, outgassing, and foam collapse in decompressed rhyolitic melts. Earth Planet Sci Lett 412:173–185CrossRef Martel C, Iacono-marziano G (2015) Timescales of bubble coalescence, outgassing, and foam collapse in decompressed rhyolitic melts. Earth Planet Sci Lett 412:173–185CrossRef
Zurück zum Zitat Men X, Tang CA, Wang S, Li Y, Yang T, Ma T (2013) Numerical simulation of hydraulic fracturing in heterogeneous rock: the effect of perforation angles and bedding plane on hydraulic fractures evolutions. In: Bunger AP, Mclennan J, Jeffrey R (eds) Effective and sustainable hydraulic fracturing. InTech, Rijeka Men X, Tang CA, Wang S, Li Y, Yang T, Ma T (2013) Numerical simulation of hydraulic fracturing in heterogeneous rock: the effect of perforation angles and bedding plane on hydraulic fractures evolutions. In: Bunger AP, Mclennan J, Jeffrey R (eds) Effective and sustainable hydraulic fracturing. InTech, Rijeka
Zurück zum Zitat Mohamad AA, Kuzmin A (2010) A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Trans 53(5–6):990–996CrossRef Mohamad AA, Kuzmin A (2010) A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Trans 53(5–6):990–996CrossRef
Zurück zum Zitat Mora P, Wang Y, Alonso-marroquin F (2015) Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems—a tool to study creation of fluid flow networks for viable deep geothermal energy. J Earth Sci 26(1):11–19CrossRef Mora P, Wang Y, Alonso-marroquin F (2015) Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems—a tool to study creation of fluid flow networks for viable deep geothermal energy. J Earth Sci 26(1):11–19CrossRef
Zurück zum Zitat Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174CrossRef Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174CrossRef
Zurück zum Zitat Richou AB, Ambari A, Naciri JK (2004) Drag force on a circular cylinder midway between two parallel plates at very low Reynolds numbers—part 1: poiseuille flow (numerical). Chem Eng Sci 59(15):3215–3222CrossRef Richou AB, Ambari A, Naciri JK (2004) Drag force on a circular cylinder midway between two parallel plates at very low Reynolds numbers—part 1: poiseuille flow (numerical). Chem Eng Sci 59(15):3215–3222CrossRef
Zurück zum Zitat Wang H (2015) Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method. J Petrol Sci Eng 135:127–140CrossRef Wang H (2015) Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method. J Petrol Sci Eng 135:127–140CrossRef
Zurück zum Zitat Wang M, Fen YT, Wang CY (2016) Coupled bonded particle and lattice Boltzmann method for modelling fluid–solid interaction. Int J Numer Analyt Meth Geomech 40(10):1383–1401CrossRef Wang M, Fen YT, Wang CY (2016) Coupled bonded particle and lattice Boltzmann method for modelling fluid–solid interaction. Int J Numer Analyt Meth Geomech 40(10):1383–1401CrossRef
Zurück zum Zitat Xue S, Yuan L, Wang J, Wang Y, Xie J (2015) A coupled DEM and LBM model for simulation of outbursts of coal and gas. Int J Coal Sci Tech 2(1):22–29CrossRef Xue S, Yuan L, Wang J, Wang Y, Xie J (2015) A coupled DEM and LBM model for simulation of outbursts of coal and gas. Int J Coal Sci Tech 2(1):22–29CrossRef
Zurück zum Zitat Yin P, Zhao G-F (2015) Numerical study of two-phase fluid distributions in fractured porous media. Int J Numer Analyt Meth Geomech 39(11):1188–1211CrossRef Yin P, Zhao G-F (2015) Numerical study of two-phase fluid distributions in fractured porous media. Int J Numer Analyt Meth Geomech 39(11):1188–1211CrossRef
Zurück zum Zitat Yu D, Mei R, Luo LS, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerospace Sci 39(5):329–367CrossRef Yu D, Mei R, Luo LS, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerospace Sci 39(5):329–367CrossRef
Zurück zum Zitat Zhang H, Tan Y, Shu S, Niu X, Trias FX, Yan GD, Li H, Sheng Y (2014) Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling. Comput Fluids 94(2):37–48CrossRef Zhang H, Tan Y, Shu S, Niu X, Trias FX, Yan GD, Li H, Sheng Y (2014) Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling. Comput Fluids 94(2):37–48CrossRef
Zurück zum Zitat Zhao G-F (2015) Modelling 3d jointed rock masses using a lattice spring model. Int J Rock Mech Min Sci 78:79–90CrossRef Zhao G-F (2015) Modelling 3d jointed rock masses using a lattice spring model. Int J Rock Mech Min Sci 78:79–90CrossRef
Zurück zum Zitat Zhao G-F (2017) Developing a four-dimensional lattice spring model for mechanical responses of solids. Comput Meth Appl Mech Eng 315:881–895CrossRef Zhao G-F (2017) Developing a four-dimensional lattice spring model for mechanical responses of solids. Comput Meth Appl Mech Eng 315:881–895CrossRef
Zurück zum Zitat Zhao G-F, Khalili N (2012) A lattice spring model for coupled fluid flow and deformation problems in geomechanics. Rock Mech Rock Eng 45(5):781–799CrossRef Zhao G-F, Khalili N (2012) A lattice spring model for coupled fluid flow and deformation problems in geomechanics. Rock Mech Rock Eng 45(5):781–799CrossRef
Zurück zum Zitat Zhao G-F, Fang J, Zhao J (2011) A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Analyt Meth Geomech 35:859–885CrossRef Zhao G-F, Fang J, Zhao J (2011) A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Analyt Meth Geomech 35:859–885CrossRef
Zurück zum Zitat Zhao G-F, Russell A, Zhao X, Khalili N (2014) Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with x-ray micro CT. Int J Solids Struct 51(7–8):1587–1600CrossRef Zhao G-F, Russell A, Zhao X, Khalili N (2014) Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with x-ray micro CT. Int J Solids Struct 51(7–8):1587–1600CrossRef
Zurück zum Zitat Zhao G-F, Kazerani T, Man K, Gao M, Zhao J (2015) Numerical study of the semi-circular bend dynamic fracture toughness test using discrete element models. Sci China Tech Sci 58(9):1587–1595CrossRef Zhao G-F, Kazerani T, Man K, Gao M, Zhao J (2015) Numerical study of the semi-circular bend dynamic fracture toughness test using discrete element models. Sci China Tech Sci 58(9):1587–1595CrossRef
Zurück zum Zitat Zhao G-F, Lian J, Russell A, Khalili N (2019) Implementation of a modified Drucker-Prager model in the lattice spring model for plasticity and fracture. Comput Geotech 107:97–109CrossRef Zhao G-F, Lian J, Russell A, Khalili N (2019) Implementation of a modified Drucker-Prager model in the lattice spring model for plasticity and fracture. Comput Geotech 107:97–109CrossRef
Metadaten
Titel
A Coupling Model of Distinct Lattice Spring Model and Lattice Boltzmann Method for Hydraulic Fracturing
verfasst von
Chao Jiang
Gao-Feng Zhao
Publikationsdatum
09.05.2019
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 10/2019
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-019-01819-3

Weitere Artikel der Ausgabe 10/2019

Rock Mechanics and Rock Engineering 10/2019 Zur Ausgabe