Skip to main content
Erschienen in: Journal of Iron and Steel Research International 5/2022

21.04.2022 | Original Paper

A deep learning-based method for segmentation and quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images

verfasst von: Bing Han, Wei-hao Wan, Dan-dan Sun, Cai-chang Dong, Lei Zhao, Hai-zhou Wang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructural classification is typically done manually by human experts, which gives rise to uncertainties due to subjectivity and reduces the overall efficiency. A high-throughput characterization is proposed based on deep learning, rapid acquisition technology, and mathematical statistics for the recognition, segmentation, and quantification of microstructure in weathering steel. The segmentation results showed that this method was accurate and efficient, and the segmentation of inclusions and pearlite phase achieved accuracy of 89.95% and 90.86%, respectively. The time required for batch processing by MIPAR software involving thresholding segmentation, morphological processing, and small area deletion was 1.05 s for a single image. By comparison, our system required only 0.102 s, which is ten times faster than the commercial software. The quantification results were extracted from large volumes of sequential image data (150 mm2, 62,216 images, 1024 × 1024 pixels), which ensure comprehensive statistics. Microstructure information, such as three-dimensional density distribution and the frequency of the minimum spatial distance of inclusions on the sample surface of 150 mm2, were quantified by extracting the coordinates and sizes of individual features. A refined characterization method for two-dimensional structures and spatial information that is unattainable when performing manually or with software is provided. That will be useful for understanding properties or behaviors of weathering steel, and reducing the resort to physical testing.
Literatur
[1]
[2]
Zurück zum Zitat R. Li, X. Zuo, Y. Hu, Z. Wang, D. Hu, Mater. Charact. 62 (2011) 801–806.CrossRef R. Li, X. Zuo, Y. Hu, Z. Wang, D. Hu, Mater. Charact. 62 (2011) 801–806.CrossRef
[3]
Zurück zum Zitat H. Ding, Z.Y. Tang, W. Li, M. Wang, D. Song, J. Iron Steel Res. Int. 13 (2006) No. 6, 66–70.CrossRef H. Ding, Z.Y. Tang, W. Li, M. Wang, D. Song, J. Iron Steel Res. Int. 13 (2006) No. 6, 66–70.CrossRef
[4]
Zurück zum Zitat J. Zhou, D.S. Ma, H.X. Chi, Z.Z. Chen, X.Y. Li, J. Iron Steel Res. Int. 20 (2013) No. 9, 117–125.CrossRef J. Zhou, D.S. Ma, H.X. Chi, Z.Z. Chen, X.Y. Li, J. Iron Steel Res. Int. 20 (2013) No. 9, 117–125.CrossRef
[5]
Zurück zum Zitat J. Zhang, Q.W. Cai, H.B. Wu, K. Zhang, B. Wu, J. Iron Steel Res. Int. 19 (2012) No. 3, 67–72.CrossRef J. Zhang, Q.W. Cai, H.B. Wu, K. Zhang, B. Wu, J. Iron Steel Res. Int. 19 (2012) No. 3, 67–72.CrossRef
[7]
Zurück zum Zitat B.Y. Ma, X.J. Ban, Y. Su, C.N. Liu, H. Wang, W.H. Xue, Y.H. Zhi, D. Wu, Micron 116 (2019) 5–14.CrossRef B.Y. Ma, X.J. Ban, Y. Su, C.N. Liu, H. Wang, W.H. Xue, Y.H. Zhi, D. Wu, Micron 116 (2019) 5–14.CrossRef
[9]
Zurück zum Zitat A.L. Garcia-Garcia, I. Dominguez-Lopez, L. Lopez-Jimenez, J.D.O. Barceinas-Sanchez, Mater. Charact. 87 (2014) 116–124.CrossRef A.L. Garcia-Garcia, I. Dominguez-Lopez, L. Lopez-Jimenez, J.D.O. Barceinas-Sanchez, Mater. Charact. 87 (2014) 116–124.CrossRef
[10]
Zurück zum Zitat V.H.C. de Albuquerque, P.C. Cortez, A.R. de Alexandria, J.M.R.S. Tavares, Nondestr. Test. Eval. 23 (2008) 273–283.CrossRef V.H.C. de Albuquerque, P.C. Cortez, A.R. de Alexandria, J.M.R.S. Tavares, Nondestr. Test. Eval. 23 (2008) 273–283.CrossRef
[11]
Zurück zum Zitat L. Duval1, M. Moreaud, C. Couprie, D. Jeulin, H. Talbot, J. Angulo, in: 2014 IEEE International Conference on Image Processing, Paris, France, 2014, pp. 4862–4866. L. Duval1, M. Moreaud, C. Couprie, D. Jeulin, H. Talbot, J. Angulo, in: 2014 IEEE International Conference on Image Processing, Paris, France, 2014, pp. 4862–4866.
[12]
Zurück zum Zitat C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Met. 9 (2012) 671–675.CrossRef C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Met. 9 (2012) 671–675.CrossRef
[13]
Zurück zum Zitat P. Ctibor, R. Lechnerová, V. Bene, Mater. Charact. 56 (2006) 297–304.CrossRef P. Ctibor, R. Lechnerová, V. Bene, Mater. Charact. 56 (2006) 297–304.CrossRef
[14]
Zurück zum Zitat S.G. Lee, Y. Mao, A.M. Gokhale, J. Harris, M.F. Horstemeyer, Mater. Charact. 60 (2009) 964–970.CrossRef S.G. Lee, Y. Mao, A.M. Gokhale, J. Harris, M.F. Horstemeyer, Mater. Charact. 60 (2009) 964–970.CrossRef
[15]
Zurück zum Zitat V.H.C. de Albuquerque, P.P. Reboucas Filho, T.S. Cavalcante, J.M.R.S. Tavares, J. Microsc. 240 (2010) 50–59. V.H.C. de Albuquerque, P.P. Reboucas Filho, T.S. Cavalcante, J.M.R.S. Tavares, J. Microsc. 240 (2010) 50–59.
[16]
Zurück zum Zitat R.B. Oliveira, M.E. Filho, Z. Ma, J.P. Papa, A.S. Pereira, J.M.R.S. Tavares, Comput. Met. Programs Biomed. 131 (2016) 127–141.CrossRef R.B. Oliveira, M.E. Filho, Z. Ma, J.P. Papa, A.S. Pereira, J.M.R.S. Tavares, Comput. Met. Programs Biomed. 131 (2016) 127–141.CrossRef
[17]
[18]
Zurück zum Zitat S. Zajac, V. Schwinn, K.H. Tacke, Mater. Sci. Forum 500–501 (2005) 387–394.CrossRef S. Zajac, V. Schwinn, K.H. Tacke, Mater. Sci. Forum 500–501 (2005) 387–394.CrossRef
[19]
Zurück zum Zitat T. Dutta, D. Das, S. Banerjee, S.K. Saha, S. Datta, Measurement 137 (2019) 595–603.CrossRef T. Dutta, D. Das, S. Banerjee, S.K. Saha, S. Datta, Measurement 137 (2019) 595–603.CrossRef
[20]
Zurück zum Zitat V.H.C. de Albuquerque, C.C. Silva, T.I. Menezes, J.P. Farias, J.M.R.S. Tavares, Microsc. Res. Technol. 74 (2011) 36–46.CrossRef V.H.C. de Albuquerque, C.C. Silva, T.I. Menezes, J.P. Farias, J.M.R.S. Tavares, Microsc. Res. Technol. 74 (2011) 36–46.CrossRef
[21]
Zurück zum Zitat V.H.C. de Albuquerque, J.M.R.S. Tavares, P.C. Cortez, Int. J. Microstruct. Mater. Propert. 5 (2010) 52–64. V.H.C. de Albuquerque, J.M.R.S. Tavares, P.C. Cortez, Int. J. Microstruct. Mater. Propert. 5 (2010) 52–64.
[22]
[23]
Zurück zum Zitat D.S. Jodas, A.S. Pereira, J.M.R.S. Tavares, Expert Systems Appl. 46 (2016) 1–14.CrossRef D.S. Jodas, A.S. Pereira, J.M.R.S. Tavares, Expert Systems Appl. 46 (2016) 1–14.CrossRef
[24]
[25]
Zurück zum Zitat I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, H. Sebastian Seung, Bioinformatics 33 (2017) 2424–2426. I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, H. Sebastian Seung, Bioinformatics 33 (2017) 2424–2426.
[26]
Zurück zum Zitat N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Montbonnot, France, 2005. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Montbonnot, France, 2005.
[27]
Zurück zum Zitat N. Vyas, R.L. Sammons, O. Addison, H. Dehghani, A.D. Walmsley, Sci. Rep. 6 (2016) 32694.CrossRef N. Vyas, R.L. Sammons, O. Addison, H. Dehghani, A.D. Walmsley, Sci. Rep. 6 (2016) 32694.CrossRef
[28]
Zurück zum Zitat S.H. Kim, J.H. Lee, B. Ko, J.Y. Nam, in: 2010 International Conference on Machine Learning and Cybernetics, Qingdao, China, 2010, pp. 3190–3194. S.H. Kim, J.H. Lee, B. Ko, J.Y. Nam, in: 2010 International Conference on Machine Learning and Cybernetics, Qingdao, China, 2010, pp. 3190–3194.
[29]
Zurück zum Zitat J. Long, E. Shelhamer, T. Darrell, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, America, 2015, pp. 640–651. J. Long, E. Shelhamer, T. Darrell, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, America, 2015, pp. 640–651.
[30]
Zurück zum Zitat S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mucklich, Sci. Rep. 8 (2018) 2128.CrossRef S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mucklich, Sci. Rep. 8 (2018) 2128.CrossRef
[31]
Zurück zum Zitat B.Y. Ma, X.J. Ban, H.Y. Huang, Y.L. Chen, W.B. Liu, Y.H. Zhi, Symmetry 10 (2018) 107.CrossRef B.Y. Ma, X.J. Ban, H.Y. Huang, Y.L. Chen, W.B. Liu, Y.H. Zhi, Symmetry 10 (2018) 107.CrossRef
[32]
Zurück zum Zitat D.S. Bulgarevich, S. Tsukamoto, T. Kasuya, M. Demura, M. Watanabe, Sci. Rep. 8 (2018) 2708.CrossRef D.S. Bulgarevich, S. Tsukamoto, T. Kasuya, M. Demura, M. Watanabe, Sci. Rep. 8 (2018) 2708.CrossRef
[33]
Zurück zum Zitat A. Yoshitaka, T. Motoki, H. Shogo, Tetsu-to-Hagane 102 (2016) 722–729.CrossRef A. Yoshitaka, T. Motoki, H. Shogo, Tetsu-to-Hagane 102 (2016) 722–729.CrossRef
[34]
Zurück zum Zitat Q. Zhang, Z. Cui, X. Niu, S. Geng, Y. Qiao, International Conference on Neural Information Processing (2017) 364–372. Q. Zhang, Z. Cui, X. Niu, S. Geng, Y. Qiao, International Conference on Neural Information Processing (2017) 364–372.
[35]
Zurück zum Zitat S.K. Devalla, P.K. Renukanand, B.K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.M. Mari, K.S. Chin, T.A. Tun, N.G. Strouthidis, T. Aung, A.H. Thiery, M.J.A. Girard, Biomed. Opt. Express 9 (2018) 3244–3265.CrossRef S.K. Devalla, P.K. Renukanand, B.K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.M. Mari, K.S. Chin, T.A. Tun, N.G. Strouthidis, T. Aung, A.H. Thiery, M.J.A. Girard, Biomed. Opt. Express 9 (2018) 3244–3265.CrossRef
[36]
Zurück zum Zitat Z. Zhang, Q. Liu, Y. Wang, IEEE Geosci. Remote Sens. Lett. 15 (2018) 749–753. Z. Zhang, Q. Liu, Y. Wang, IEEE Geosci. Remote Sens. Lett. 15 (2018) 749–753.
[37]
[38]
Zurück zum Zitat H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, MIUA 723 (2017) 506–517. H. Dong, G. Yang, F. Liu, Y. Mo, Y. Guo, MIUA 723 (2017) 506–517.
[39]
Zurück zum Zitat O. Ronneberger, P. Fischer, T. Brox, in: 18th International Conference, Munich, Germany, 2015, pp. 234–241. O. Ronneberger, P. Fischer, T. Brox, in: 18th International Conference, Munich, Germany, 2015, pp. 234–241.
[40]
Zurück zum Zitat D. Stoller, S. Ewert, S. Dixon, Wave-U-Net: a multi-scale neural network for end-to-end audio source separation, in: 19th International Society for Music Information Retrieval Conference, Paris, France, 2018. D. Stoller, S. Ewert, S. Dixon, Wave-U-Net: a multi-scale neural network for end-to-end audio source separation, in: 19th International Society for Music Information Retrieval Conference, Paris, France, 2018.
[41]
Zurück zum Zitat A. Sevastopolsky, Pattern Recognition Image Anal. 27 (2017) 618–624.CrossRef A. Sevastopolsky, Pattern Recognition Image Anal. 27 (2017) 618–624.CrossRef
[42]
Zurück zum Zitat M. Fernandes, J.C. Pires, N. Cheung, A. Garcia, Mater. Charact. 51 (2003) 301–308.CrossRef M. Fernandes, J.C. Pires, N. Cheung, A. Garcia, Mater. Charact. 51 (2003) 301–308.CrossRef
[43]
[44]
Zurück zum Zitat I.I. Reformatskaya, I.G. Rodionova, Y.A. Beilin, L.A. NiselSon, A.N. Podobaev, Prot. Met. 40 (2004) 447452.CrossRef I.I. Reformatskaya, I.G. Rodionova, Y.A. Beilin, L.A. NiselSon, A.N. Podobaev, Prot. Met. 40 (2004) 447452.CrossRef
Metadaten
Titel
A deep learning-based method for segmentation and quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images
verfasst von
Bing Han
Wei-hao Wan
Dan-dan Sun
Cai-chang Dong
Lei Zhao
Hai-zhou Wang
Publikationsdatum
21.04.2022
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 5/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00719-7

Weitere Artikel der Ausgabe 5/2022

Journal of Iron and Steel Research International 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.