Skip to main content
Erschienen in: Journal of Iron and Steel Research International 5/2022

25.08.2021 | Original Paper

Effect of Mo content on nano-scaled particles, prior austenite grains and impact toughness of CGHAZ in offshore engineering steels

verfasst von: De-kun Liu, Jian Yang, Yin-hui Zhang, Long-yun Xu

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of Mo on nano-scaled particles, prior austenite grains and impact toughness of coarse-grained heat-affected zone (CGHAZ) in offshore engineering steels with Ca deoxidation was studied. The heat-affected zone (HAZ) toughness of Mo16 steel is obviously higher than that of Mo8 steel at all the heat inputs of 50, 100, 150 and 200 kJ/cm, with HAZ toughness of both steels decreased with increasing the welding heat input. When the Mo content is increased from 0.08 to 0.16%, the size of nano-scaled particles in HAZ is decreased from 18 to 15 nm, and their number density is increased from 0.7 to 0.9 μm−2. Thus, the Zener pinning force is increased, and the prior austenite grain size (PAGS) is decreased, leading to the improved HAZ toughness. Microstructural characterizations show that the nano-scaled particles in both steels are Ti(C, N) with the solute elements of Nb and Mo. The calculated critical particle size of TiN is 10.2 and 8.4 nm in Mo8 and Mo16 steels at 1350 °C, and the particles larger than the critical size are stable during the welding process. From the Zener pinning force calculation, Ti(C, N) particles play the more important role in the pinning effect on the prior austenite grain growth. Based on the regression analysis by the MATLAB results, the predicted values of PAGS at different heat inputs are well fitted with the experimental data.
Literatur
[1]
Zurück zum Zitat A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, H. Yasui, Nippon Steel Tech. Rep. (2004) No. 90, 2–6. A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, H. Yasui, Nippon Steel Tech. Rep. (2004) No. 90, 2–6.
[2]
Zurück zum Zitat J. Yang, L.Y. Xu, K. Zhu, R.Z. Wang, L.J. Zhou, W.L. Wang, Steel Res. Int. 86 (2015) 619–625.CrossRef J. Yang, L.Y. Xu, K. Zhu, R.Z. Wang, L.J. Zhou, W.L. Wang, Steel Res. Int. 86 (2015) 619–625.CrossRef
[3]
Zurück zum Zitat L.Y. Xu, J. Yang, R.Z. Wang, Y.N. Wang, W.L. Wang, Metall. Mater. Trans. A 47 (2016) 3354–3364.CrossRef L.Y. Xu, J. Yang, R.Z. Wang, Y.N. Wang, W.L. Wang, Metall. Mater. Trans. A 47 (2016) 3354–3364.CrossRef
[4]
Zurück zum Zitat Y.H. Zhang, J. Yang, L.Y. Xu, Y. Qiu, G.G. Cheng, M.Y. Yao, J.X. Dong, Metals 9 (2019) 1328–1345.CrossRef Y.H. Zhang, J. Yang, L.Y. Xu, Y. Qiu, G.G. Cheng, M.Y. Yao, J.X. Dong, Metals 9 (2019) 1328–1345.CrossRef
[5]
Zurück zum Zitat S. Khare, K. Lee, H.K.D.H. Bhadeshia, Int. J. Mater. Res. 100 (2009) 1513–1520.CrossRef S. Khare, K. Lee, H.K.D.H. Bhadeshia, Int. J. Mater. Res. 100 (2009) 1513–1520.CrossRef
[6]
Zurück zum Zitat H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, G.H. Liu, Mater. Des. 84 (2015) 95–99.CrossRef H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, G.H. Liu, Mater. Des. 84 (2015) 95–99.CrossRef
[7]
Zurück zum Zitat Y.X. Cao, X. Wan, F. Zhou, Y. Shen, Y. Liu, G. Li, K.M. Wu, Int. J. Mater. Res. 112 (2021) 98–107.CrossRef Y.X. Cao, X. Wan, F. Zhou, Y. Shen, Y. Liu, G. Li, K.M. Wu, Int. J. Mater. Res. 112 (2021) 98–107.CrossRef
[10]
Zurück zum Zitat K. Nakashima, K. Hase, T. Eto, JFE Tech. Rep. (2015) No. 20, 8–13. K. Nakashima, K. Hase, T. Eto, JFE Tech. Rep. (2015) No. 20, 8–13.
[11]
Zurück zum Zitat T. Kimura, H. Sumi, Y. Kitani, JFE Tech. Rep. (2005) No. 5, 45–52. T. Kimura, H. Sumi, Y. Kitani, JFE Tech. Rep. (2005) No. 5, 45–52.
[12]
Zurück zum Zitat Y. Zhang, X.B. Li, H. Ma, Metall. Mater. Trans. B 47 (2015) 2148–2156.CrossRef Y. Zhang, X.B. Li, H. Ma, Metall. Mater. Trans. B 47 (2015) 2148–2156.CrossRef
[13]
Zurück zum Zitat S. Kanazawa, A. Nakashima, K. Okamoto, K. Kanaya, Tetsu-to-Hagane 61 (1975) 2589–2603.CrossRef S. Kanazawa, A. Nakashima, K. Okamoto, K. Kanaya, Tetsu-to-Hagane 61 (1975) 2589–2603.CrossRef
[14]
Zurück zum Zitat Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto, ISIJ Int. 34 (1994) 829–835.CrossRef Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto, ISIJ Int. 34 (1994) 829–835.CrossRef
[15]
Zurück zum Zitat T. Kato, S. Sato, H. Ohta, T. Shiwaku, Kobelco Technol. Rev. 61 (2011) 32–35. T. Kato, S. Sato, H. Ohta, T. Shiwaku, Kobelco Technol. Rev. 61 (2011) 32–35.
[16]
[17]
Zurück zum Zitat X.Q. Pan, J. Yang, Y.H. Zhang, L.Y. Xu, R.B. Li, Ironmak. Steelmak. 48 (2021) 417–427.CrossRef X.Q. Pan, J. Yang, Y.H. Zhang, L.Y. Xu, R.B. Li, Ironmak. Steelmak. 48 (2021) 417–427.CrossRef
[18]
Zurück zum Zitat M. Shome, O.N. Mohanty, Metall. Mater. Trans. A 37 (2006) 2159–2169.CrossRef M. Shome, O.N. Mohanty, Metall. Mater. Trans. A 37 (2006) 2159–2169.CrossRef
[19]
Zurück zum Zitat Y.W. Kim, S.W. Song, S.J. Seo, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 565 (2013) 430–438.CrossRef Y.W. Kim, S.W. Song, S.J. Seo, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 565 (2013) 430–438.CrossRef
[20]
[21]
Zurück zum Zitat E.J. Pavlina, J.G. Speer, C.J. Van Tyne, Scripta Mater. 66 (2012) 243–246.CrossRef E.J. Pavlina, J.G. Speer, C.J. Van Tyne, Scripta Mater. 66 (2012) 243–246.CrossRef
[22]
Zurück zum Zitat K.J. Irvine, J. Iron Steel Inst. 250 (1967) 161–182. K.J. Irvine, J. Iron Steel Inst. 250 (1967) 161–182.
[23]
Zurück zum Zitat H.H. Huang, G.W. Yang, G. Zhao, X.P. Mao, X.L. Gan, Q.L. Yin, H. Yi, Mater. Sci. Eng. A 736 (2018) 148–155.CrossRef H.H. Huang, G.W. Yang, G. Zhao, X.P. Mao, X.L. Gan, Q.L. Yin, H. Yi, Mater. Sci. Eng. A 736 (2018) 148–155.CrossRef
[24]
Zurück zum Zitat T. Mori, M. Tokizane, K. Yamaguchi, E. Sunami, Y. Nakazima, Tetsu-to-Hagane 54 (1968) 763–776.CrossRef T. Mori, M. Tokizane, K. Yamaguchi, E. Sunami, Y. Nakazima, Tetsu-to-Hagane 54 (1968) 763–776.CrossRef
[26]
Zurück zum Zitat Z.Q. Wang, X.J. Sun, Z.G. Yang, Q.L. Yong, C. Zhang, Z.D. Li, Y.Q. Weng, Mater. Sci. Eng. A 573 (2013) 84–91.CrossRef Z.Q. Wang, X.J. Sun, Z.G. Yang, Q.L. Yong, C. Zhang, Z.D. Li, Y.Q. Weng, Mater. Sci. Eng. A 573 (2013) 84–91.CrossRef
[27]
Zurück zum Zitat P.A. Manohar, D. Dunne, T. Chandra, C. Killmore, ISIJ Int. 36 (1996) 194–200.CrossRef P.A. Manohar, D. Dunne, T. Chandra, C. Killmore, ISIJ Int. 36 (1996) 194–200.CrossRef
[28]
Zurück zum Zitat S. Dhara, R.K.W. Marceau, K. Wood, T. Dorin, I.B. Timokhina, P.D. Hodgson, Mater. Sci. Eng. A 718 (2018) 74–86.CrossRef S. Dhara, R.K.W. Marceau, K. Wood, T. Dorin, I.B. Timokhina, P.D. Hodgson, Mater. Sci. Eng. A 718 (2018) 74–86.CrossRef
[29]
[30]
Zurück zum Zitat M. Maalekian, R. Radis, M. Militzer, A. Moreau, W.J. Poole, Acta Mater. 60 (2012) 1015–1026.CrossRef M. Maalekian, R. Radis, M. Militzer, A. Moreau, W.J. Poole, Acta Mater. 60 (2012) 1015–1026.CrossRef
[31]
Zurück zum Zitat K. Banerjee, M. Militzer, M. Perez, X. Wang, Metall. Mater. Trans. A 41 (2010) 3161–3172.CrossRef K. Banerjee, M. Militzer, M. Perez, X. Wang, Metall. Mater. Trans. A 41 (2010) 3161–3172.CrossRef
[32]
Zurück zum Zitat X.W. Lei, S.B. Zhou, J.H. Huang, Metall. Mater. Trans. A 51 (2020) 1665–1676.CrossRef X.W. Lei, S.B. Zhou, J.H. Huang, Metall. Mater. Trans. A 51 (2020) 1665–1676.CrossRef
[33]
[34]
Zurück zum Zitat M. Shome, O.P. Gupta, O.N. Mohanty, Metall. Mater. Trans. A 35 (2004) 985–996.CrossRef M. Shome, O.P. Gupta, O.N. Mohanty, Metall. Mater. Trans. A 35 (2004) 985–996.CrossRef
[35]
[36]
[37]
Zurück zum Zitat N. Christensen, T. Simonsen, Scand. J. Metall. 10 (1981) 147–156. N. Christensen, T. Simonsen, Scand. J. Metall. 10 (1981) 147–156.
[38]
Zurück zum Zitat X.W. Lei, J.H. Huang, X. Jin, S.H. Chen, X.K. Zhao, Mater. Lett. 181 (2016) 240–243.CrossRef X.W. Lei, J.H. Huang, X. Jin, S.H. Chen, X.K. Zhao, Mater. Lett. 181 (2016) 240–243.CrossRef
[39]
Zurück zum Zitat N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, A.P. Gerlich, Mater. Sci. Eng. A 662 (2016) 481–491.CrossRef N. Huda, A.R.H. Midawi, J. Gianetto, R. Lazor, A.P. Gerlich, Mater. Sci. Eng. A 662 (2016) 481–491.CrossRef
[40]
Zurück zum Zitat Z.Q. Wang, H. Zhang, C.H. Guo, W.B. Liu, Z.G. Yang, X.J. Sun, Z.Y. Zhang, F.C. Jiang, J. Mater. Sci. 51 (2016) 4996–5007.CrossRef Z.Q. Wang, H. Zhang, C.H. Guo, W.B. Liu, Z.G. Yang, X.J. Sun, Z.Y. Zhang, F.C. Jiang, J. Mater. Sci. 51 (2016) 4996–5007.CrossRef
[41]
Zurück zum Zitat G. Miyamoto, K. Yokoyama, T. Furuhara, Acta Mater. 177 (2019) 187–197.CrossRef G. Miyamoto, K. Yokoyama, T. Furuhara, Acta Mater. 177 (2019) 187–197.CrossRef
[42]
Metadaten
Titel
Effect of Mo content on nano-scaled particles, prior austenite grains and impact toughness of CGHAZ in offshore engineering steels
verfasst von
De-kun Liu
Jian Yang
Yin-hui Zhang
Long-yun Xu
Publikationsdatum
25.08.2021
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 5/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00639-6

Weitere Artikel der Ausgabe 5/2022

Journal of Iron and Steel Research International 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.