Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.04.2021

A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations

verfasst von: Hao Chen, Hai-Wei Sun

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is concerned with numerical methods for solving the multidimensional Allen-Cahn equations with spatial fractional Riesz derivatives. A fully discrete numerical scheme is proposed using a dimensional splitting exponential time differencing approximation for the time integration with finite difference discretization in space. Theoretically, we prove that the proposed numerical scheme can unconditionally preserve the discrete maximum principle. The error estimate in maximum-norm of the proposed scheme is also established in the fully discrete sense. In practical computation, the proposed algorithm can be carried out by computing linear systems and the matrix exponential associated with only one dimensional discretized matrices that possess Toeplitz structure. Meanwhile, fast methods for inverting the Toeplitz matrix and computing the Toeplitz exponential multiplying a vector are exploited to reduce the complexity. Numerical examples in two and three spatial dimensions are given to illustrate the effectiveness and efficiency of the proposed scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)CrossRef Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)CrossRef
2.
Zurück zum Zitat Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33, 488–511 (2011)MathSciNetMATHCrossRef Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33, 488–511 (2011)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT 54, 937–954 (2014)MathSciNetMATHCrossRef Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT 54, 937–954 (2014)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)MathSciNetMATHCrossRef Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef
8.
Zurück zum Zitat Du, Q., Zhu, W.: Stability analysis and application of the exponential time differencing schemes. J. Comput. Math. 22, 200–209 (2004)MathSciNetMATH Du, Q., Zhu, W.: Stability analysis and application of the exponential time differencing schemes. J. Comput. Math. 22, 200–209 (2004)MathSciNetMATH
9.
Zurück zum Zitat Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT 45, 307–328 (2005)MathSciNetMATHCrossRef Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT 45, 307–328 (2005)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Du, Q., Yang, J.: Asymptotic compatible Fourier spectral approximations of nonlocal Allen–Cahn equations. SIAM J. Numer. Anal. 54, 1899–1919 (2016)MathSciNetMATHCrossRef Du, Q., Yang, J.: Asymptotic compatible Fourier spectral approximations of nonlocal Allen–Cahn equations. SIAM J. Numer. Anal. 54, 1899–1919 (2016)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)MathSciNetMATHCrossRef Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. accepted, 2020 Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. accepted, 2020
13.
Zurück zum Zitat Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)MathSciNetMATHCrossRef Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Feng, X., Song, H., Tang, T., Yang, J.: Nonlinear stability of the implicit-explicit methods for the Allen–Cahn equation. Inverse Probl. Imaging 7, 679–695 (2013)MathSciNetMATHCrossRef Feng, X., Song, H., Tang, T., Yang, J.: Nonlinear stability of the implicit-explicit methods for the Allen–Cahn equation. Inverse Probl. Imaging 7, 679–695 (2013)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Feng, X., Tang, T., Yang, J.: Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models. East Asian J. Appl. Math. 3, 59–80 (2013)MathSciNetMATHCrossRef Feng, X., Tang, T., Yang, J.: Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models. East Asian J. Appl. Math. 3, 59–80 (2013)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Gaudreault, S., Rainwater, G., Tokman, M.: KIOPS: a fast adaptive Krylov subspace solver for exponential integrators. J. Comput. Phys. 372, 236–255 (2018)MathSciNetMATHCrossRef Gaudreault, S., Rainwater, G., Tokman, M.: KIOPS: a fast adaptive Krylov subspace solver for exponential integrators. J. Comput. Phys. 372, 236–255 (2018)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integr. Equ. Oper. Theory 15, 730–743 (1992)MathSciNetMATHCrossRef Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integr. Equ. Oper. Theory 15, 730–743 (1992)MathSciNetMATHCrossRef
18.
Zurück zum Zitat He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen–Cahn equation. Appl. Numer. Math. 151, 44–63 (2020)MathSciNetMATHCrossRef He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen–Cahn equation. Appl. Numer. Math. 151, 44–63 (2020)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)MATHCrossRef Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)MATHCrossRef
21.
Zurück zum Zitat Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)MathSciNetMATHCrossRef Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef
24.
Zurück zum Zitat Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)MathSciNetMATHCrossRef Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Jin, X.: Developments and Applications of Block Toeplitz Iterative Solvers. Kluwer, Dordrecht (2002) Jin, X.: Developments and Applications of Block Toeplitz Iterative Solvers. Kluwer, Dordrecht (2002)
26.
27.
Zurück zum Zitat Lee, S., Liu, X., Sun, H.-W.: Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19, 87–101 (2012)MathSciNetMATHCrossRef Lee, S., Liu, X., Sun, H.-W.: Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebra Appl. 19, 87–101 (2012)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Lee, S., Pang, H., Sun, H.-W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MathSciNetMATHCrossRef Lee, S., Pang, H., Sun, H.-W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Liao, H.-L., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Anal. 58, 2294–2314 (2020)MathSciNetMATHCrossRef Liao, H.-L., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Anal. 58, 2294–2314 (2020)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Minchev, B.V., Wright, W.M.: A review of exponential integrators for first order semi-linear problems. preprint, NTNU Trondheim, Trondheim, Norway, 2005 Minchev, B.V., Wright, W.M.: A review of exponential integrators for first order semi-linear problems. preprint, NTNU Trondheim, Trondheim, Norway, 2005
31.
Zurück zum Zitat Niesen, J., Wright, W.M.: Algorithm 919: a Krylov subspace algorithm for evaluating the \(\varphi \)-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38, 22 (2012)MathSciNetMATHCrossRef Niesen, J., Wright, W.M.: Algorithm 919: a Krylov subspace algorithm for evaluating the \(\varphi \)-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38, 22 (2012)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Pang, H., Sun, H.-W.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18, 603–614 (2011)MathSciNetMATHCrossRef Pang, H., Sun, H.-W.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18, 603–614 (2011)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Pang, H., Sun, H.-W.: Fast exponential time integration for pricing options in stochastic volatility jump diffusion models. East Asian J. Appl. Math. 4, 53–68 (2014)MathSciNetMATHCrossRef Pang, H., Sun, H.-W.: Fast exponential time integration for pricing options in stochastic volatility jump diffusion models. East Asian J. Appl. Math. 4, 53–68 (2014)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
35.
Zurück zum Zitat Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)MathSciNetMATH Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Carathéodory–Fejér approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)MathSciNetMATH
36.
Zurück zum Zitat Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)MathSciNetMATHCrossRef Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669–1691 (2010)MathSciNetMATHCrossRef Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669–1691 (2010)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)MathSciNetMATH Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)MathSciNetMATH
39.
Zurück zum Zitat Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetMATHCrossRef Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11, 1057–1070 (2009)MathSciNetMATH Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11, 1057–1070 (2009)MathSciNetMATH
41.
Zurück zum Zitat Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31, 3042–3063 (2009)MathSciNetMATHCrossRef Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31, 3042–3063 (2009)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130–143 (2015)MathSciNetMATHCrossRef Zhang, L., Sun, H., Pang, H.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comput. Phys. 299, 130–143 (2015)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Zhang, L., Sun, H.: Numerical solution for multi-dimensional Riesz fractional nonlinear reaction-diffusion equation by exponential Runge–Kutta method. J. Appl. Math. Comput. 62, 449–472 (2020)MathSciNetCrossRef Zhang, L., Sun, H.: Numerical solution for multi-dimensional Riesz fractional nonlinear reaction-diffusion equation by exponential Runge–Kutta method. J. Appl. Math. Comput. 62, 449–472 (2020)MathSciNetCrossRef
44.
Zurück zum Zitat Zhang, L., Zhang, Q., Sun, H.: Exponential Runge–Kutta method for two-dimensional nonlinear fractional complex Ginzburg–Landau equations. J. Sci. Comput. 83, 59 (2020)MathSciNetMATHCrossRef Zhang, L., Zhang, Q., Sun, H.: Exponential Runge–Kutta method for two-dimensional nonlinear fractional complex Ginzburg–Landau equations. J. Sci. Comput. 83, 59 (2020)MathSciNetMATHCrossRef
Metadaten
Titel
A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations
verfasst von
Hao Chen
Hai-Wei Sun
Publikationsdatum
01.04.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01431-0

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe

Premium Partner