Skip to main content
Erschienen in: Journal of Scientific Computing 1/2021

01.04.2021

Computable Interpolation Error Constants for the Geometric Simplex Finite Elements

verfasst von: Tingting Hao, Xiaofei Guan, Shipeng Mao, Shaochun Chen

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel high accuracy computation method for interpolation error constants is proposed over the geometric simplex finite elements. Firstly, the expansions of bounded linear operators are employed to derive the explicit estimate of interpolation error constants, which depend only on the shape of the geometric simplex finite elements and the definition of interpolation functions. Then, this method is applied to the linear interpolation function, and the results are consistent with our analysis. Finally, some numerical examples are given to validate our analysis. Such high accuracy computation method for interpolation error constants are beneficial attempts to accelerate the adaptive computation and verification of finite element solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000) Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)
2.
Zurück zum Zitat Arbenz, P.: Computable finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 2(4), 475–479 (1982)MathSciNetCrossRef Arbenz, P.: Computable finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 2(4), 475–479 (1982)MathSciNetCrossRef
3.
Zurück zum Zitat Barnhill, R.E., Brown, J.H., Mitchell, A.R.: A comparison of finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 1(1), 95–103 (1981)MathSciNetCrossRef Barnhill, R.E., Brown, J.H., Mitchell, A.R.: A comparison of finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 1(1), 95–103 (1981)MathSciNetCrossRef
4.
Zurück zum Zitat Barnhill, R.E., Gregory, J.A.: Interpolation remainder theory from Taylor expansions on triangles. Numer. Math. 25(4), 401–408 (1975)MathSciNetCrossRef Barnhill, R.E., Gregory, J.A.: Interpolation remainder theory from Taylor expansions on triangles. Numer. Math. 25(4), 401–408 (1975)MathSciNetCrossRef
5.
Zurück zum Zitat Barnhill, R.E., Gregory, J.A.: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25(3), 215–229 (1975)MathSciNetCrossRef Barnhill, R.E., Gregory, J.A.: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25(3), 215–229 (1975)MathSciNetCrossRef
6.
Zurück zum Zitat Binev, P., Dahmen, W., Devore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)MathSciNetCrossRef Binev, P., Dahmen, W., Devore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)MathSciNetCrossRef
7.
Zurück zum Zitat Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1998) Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1998)
8.
Zurück zum Zitat Chen, H., Chen, S., Qiao, Z.: C\(^0\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124(1), 99–119 (2013)MathSciNetCrossRef Chen, H., Chen, S., Qiao, Z.: C\(^0\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124(1), 99–119 (2013)MathSciNetCrossRef
9.
Zurück zum Zitat Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (1991)MathSciNetMATH Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (1991)MathSciNetMATH
10.
Zurück zum Zitat Ciarlet, P.G.: The finite element method for elliptic problems. Math. Comput. 36(154), 530–559 (2002)MathSciNetMATH Ciarlet, P.G.: The finite element method for elliptic problems. Math. Comput. 36(154), 530–559 (2002)MathSciNetMATH
11.
Zurück zum Zitat Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (2016)MATH Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (2016)MATH
12.
Zurück zum Zitat Gillette, A., Rand, A.: Interpolation error estimates for harmonic coordinates on polytopes. Math. Model. Numer. Anal. 50(3), 651–676 (2016)MathSciNetCrossRef Gillette, A., Rand, A.: Interpolation error estimates for harmonic coordinates on polytopes. Math. Model. Numer. Anal. 50(3), 651–676 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Kikuchi, F., Saito, H.: Remarks on a posteriori error estimation for finite element solutions. J. Comput. Appl. Math. 199(2), 329–336 (2007)MathSciNetCrossRef Kikuchi, F., Saito, H.: Remarks on a posteriori error estimation for finite element solutions. J. Comput. Appl. Math. 199(2), 329–336 (2007)MathSciNetCrossRef
14.
Zurück zum Zitat Lehmann, R.: Computable error-bounds in the finint-element mehtod. IMA J. Numer. Anal. 6(3), 265–271 (1986)MathSciNetCrossRef Lehmann, R.: Computable error-bounds in the finint-element mehtod. IMA J. Numer. Anal. 6(3), 265–271 (1986)MathSciNetCrossRef
15.
Zurück zum Zitat Li, Q., Liu, X.: Explicit finite element error estimates for nonhomogeneous Neumann problems. Appl. Math. 63(3), 367–379 (2018)MathSciNetCrossRef Li, Q., Liu, X.: Explicit finite element error estimates for nonhomogeneous Neumann problems. Appl. Math. 63(3), 367–379 (2018)MathSciNetCrossRef
16.
Zurück zum Zitat Lin, Q., Lin, J.: Finite element methods: Accuracy and improvement. Science Press, Beijing (2006) Lin, Q., Lin, J.: Finite element methods: Accuracy and improvement. Science Press, Beijing (2006)
17.
Zurück zum Zitat Liu, X., Kikuchi, F.: Analysis and estimation of error constants for P0 and P1 interpolations over triangular finite elements. J. Math. Sci. 17(1), 27–78 (2010)MathSciNetMATH Liu, X., Kikuchi, F.: Analysis and estimation of error constants for P0 and P1 interpolations over triangular finite elements. J. Math. Sci. 17(1), 27–78 (2010)MathSciNetMATH
18.
Zurück zum Zitat Liu, X., Kikuchi, F.: Explicit estimation of error constants appearing in non-conforming linear triangular finite element method. Appl. Math. 63(4), 381–397 (2018)MathSciNetCrossRef Liu, X., Kikuchi, F.: Explicit estimation of error constants appearing in non-conforming linear triangular finite element method. Appl. Math. 63(4), 381–397 (2018)MathSciNetCrossRef
19.
Zurück zum Zitat Liu, X., You, C.G.: Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements. Appl. Math. Comput. 319, 693–701 (2018)MathSciNetMATH Liu, X., You, C.G.: Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements. Appl. Math. Comput. 319, 693–701 (2018)MathSciNetMATH
20.
Zurück zum Zitat Mao, S., Shi, Z.C.: Explicit error estimates for mixed and nonconforming finite elements. J. Comput. Math 27(4), 425–440 (2009)MathSciNetCrossRef Mao, S., Shi, Z.C.: Explicit error estimates for mixed and nonconforming finite elements. J. Comput. Math 27(4), 425–440 (2009)MathSciNetCrossRef
21.
Zurück zum Zitat Nakao, M.T., Yamamoto, N.: A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Element. Springer, Vienna (2001)MATH Nakao, M.T., Yamamoto, N.: A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Element. Springer, Vienna (2001)MATH
22.
Zurück zum Zitat Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic maxwell’s equations. J. Sci. Comput. 46(1), 1–19 (2011)MathSciNetCrossRef Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic maxwell’s equations. J. Sci. Comput. 46(1), 1–19 (2011)MathSciNetCrossRef
23.
Zurück zum Zitat Ren, J., Mao, S., Zhang, J.: Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation. Numer. Methods Partial Differ. Equ. 34(2), 705–730 (2018)MathSciNetCrossRef Ren, J., Mao, S., Zhang, J.: Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation. Numer. Methods Partial Differ. Equ. 34(2), 705–730 (2018)MathSciNetCrossRef
24.
Zurück zum Zitat Takayasu, A., Liu, X., Oishi, S.: Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains. Nonlinear Theory Appl. IEICE 4(1), 34–61 (2013)CrossRef Takayasu, A., Liu, X., Oishi, S.: Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains. Nonlinear Theory Appl. IEICE 4(1), 34–61 (2013)CrossRef
25.
26.
Zurück zum Zitat Yao, C.: The solvability of coupling the thermal effect and magnetohydrodynamics field with turbulent convection zone and the flow field. J. Math. Anal. Appl. 476(2), 495–521 (2019)MathSciNetCrossRef Yao, C.: The solvability of coupling the thermal effect and magnetohydrodynamics field with turbulent convection zone and the flow field. J. Math. Anal. Appl. 476(2), 495–521 (2019)MathSciNetCrossRef
27.
Zurück zum Zitat Zhang, B., Chen, S., Zhao, J., Mao, S.: A posteriori error analysis of nonconforming finite element methods for convection–diffusion problems. J. Comput. Appl. Math. 321, 416–426 (2017)MathSciNetCrossRef Zhang, B., Chen, S., Zhao, J., Mao, S.: A posteriori error analysis of nonconforming finite element methods for convection–diffusion problems. J. Comput. Appl. Math. 321, 416–426 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Zhang, Q., Su, H., Lin, S.: The simplex subdivision of a complex region: a positive and negative finite element superposition principle. Eng. Comput. 34(1), 155–173 (2018)CrossRef Zhang, Q., Su, H., Lin, S.: The simplex subdivision of a complex region: a positive and negative finite element superposition principle. Eng. Comput. 34(1), 155–173 (2018)CrossRef
29.
Zurück zum Zitat Zhao, J., Chen, S.: Explicit error estimate for the nonconforming Wilson’s element. Acta Math. Sci. (Engl. Ser.) 33(3), 839–846 (2013)MathSciNetCrossRef Zhao, J., Chen, S.: Explicit error estimate for the nonconforming Wilson’s element. Acta Math. Sci. (Engl. Ser.) 33(3), 839–846 (2013)MathSciNetCrossRef
Metadaten
Titel
Computable Interpolation Error Constants for the Geometric Simplex Finite Elements
verfasst von
Tingting Hao
Xiaofei Guan
Shipeng Mao
Shaochun Chen
Publikationsdatum
01.04.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01449-4

Weitere Artikel der Ausgabe 1/2021

Journal of Scientific Computing 1/2021 Zur Ausgabe

Premium Partner