Skip to main content
Erschienen in: Journal of Computational Electronics 3/2018

16.04.2018

A dopingless gate-all-around (GAA) gate-stacked nanowire FET with reduced parametric fluctuation effects

verfasst von: Sarabdeep Singh, Ashish Raman

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a gate-all-around silicon nanowire dopingless field-effect transistor (FET), utilizing a gate-stacked technique. The source and drain regions are formed by employing a charge plasma concept, with the application of appropriate work functions for metal contacts. The charge plasma approach reduces the need for doping control during fabrication, and thus reduces the thermal budget, while the gate-stacked structure solves the problem of scaling limitations with respect to the \(\hbox {SiO}_{2}\) dielectric thickness (< 2 nm). The simulation results show that the proposed device, when compared with a conventional junctionless nanowire FET (JL-NWFET), possesses enhanced performance parameters, with improved immunity to short-channel effects. The random dopant fluctuations (RDFs) of the proposed device are analyzed and compared with those of a conventional JL-NWFET. The conventional device has a high doping concentration, and as a result suffers from higher RDFs, whereas the proposed dopingless device possesses lower RDFs. The process parameters used to measure sensitivity to RDFs include the radius, doping concentration and gate oxide thickness. When the radius of the nanowire is varied by \(+\) 30%, changes in threshold voltage, on-state current and subthreshold slope of 66, 63 and 12%, respectively, are observed in the JL-NWFET, versus 5, 22.6 and 1.8% for the proposed dopingless device (CP-NWFET). Similar variations in doping concentration and gate oxide thickness are seen with the JL-NWFET, whereas the CP-NWFET is largely unaffected. Thus, the proposed gate-stacked dopingless CP-NWFET solves the issue of both doping control and scaling limitation of the gate oxide layer, which paves the way for easier fabrication, with exceptional immunity against parametric variations, making it a good candidate for future nanoscale devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu, W., Xie, P., Lieber, C.M.: Nanowire transistor performance limits and applications. IEEE Trans. Electron Devices 55(11), 2859–2876 (2008)CrossRef Lu, W., Xie, P., Lieber, C.M.: Nanowire transistor performance limits and applications. IEEE Trans. Electron Devices 55(11), 2859–2876 (2008)CrossRef
2.
Zurück zum Zitat Cho, S., Kim, K.R., Park, B.G., Kang, I.M.: RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388–1396 (2011)CrossRef Cho, S., Kim, K.R., Park, B.G., Kang, I.M.: RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388–1396 (2011)CrossRef
3.
Zurück zum Zitat Kumar, M., Haldar, S., Gupta, M., Gupta, R.S.: Impact of gate material engineering (GME) on analog/RF performance of nanowire Schottky-barrier gate all around (GAA) MOSFET for low power wireless applications: 3D T-CAD simulation. Microelectron. J. 45(11), 1508–1514 (2014)CrossRef Kumar, M., Haldar, S., Gupta, M., Gupta, R.S.: Impact of gate material engineering (GME) on analog/RF performance of nanowire Schottky-barrier gate all around (GAA) MOSFET for low power wireless applications: 3D T-CAD simulation. Microelectron. J. 45(11), 1508–1514 (2014)CrossRef
4.
Zurück zum Zitat Sharma, S.K., Raj, B., Khosla, M.: A Gaussian approach for analytical subthreshold current model of cylindrical nanowire FET with quantum mechanical effects. Microelectron. J. 53, 65–72 (2016)CrossRef Sharma, S.K., Raj, B., Khosla, M.: A Gaussian approach for analytical subthreshold current model of cylindrical nanowire FET with quantum mechanical effects. Microelectron. J. 53, 65–72 (2016)CrossRef
5.
Zurück zum Zitat Liu, B., Zhan, C., Yang, Y., Cheng, R., Guo, P., Zhou, Q., Kong, E.Y.J., Daval, N., Veytizou, C., Delprat, D., Nguyen, B.Y.: Germanium multiple-gate field-effect transistor with in situ boron-doped raised source/drain. IEEE Trans. Electron Devices 60(7), 2135–2141 (2013)CrossRef Liu, B., Zhan, C., Yang, Y., Cheng, R., Guo, P., Zhou, Q., Kong, E.Y.J., Daval, N., Veytizou, C., Delprat, D., Nguyen, B.Y.: Germanium multiple-gate field-effect transistor with in situ boron-doped raised source/drain. IEEE Trans. Electron Devices 60(7), 2135–2141 (2013)CrossRef
6.
Zurück zum Zitat Shih, C.H., Liang, J.T., Wang, J.S., Chien, N.D.: A source-side injection lucky electron model for Schottky barrier metal-oxide-semiconductor devices. IEEE Electron Device Lett. 32(10), 1331–1333 (2011)CrossRef Shih, C.H., Liang, J.T., Wang, J.S., Chien, N.D.: A source-side injection lucky electron model for Schottky barrier metal-oxide-semiconductor devices. IEEE Electron Device Lett. 32(10), 1331–1333 (2011)CrossRef
7.
Zurück zum Zitat Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Akhavan, N.D., Razavi, P.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65, 33–37 (2011)CrossRef Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Akhavan, N.D., Razavi, P.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65, 33–37 (2011)CrossRef
8.
Zurück zum Zitat Doria, R.T., Pavanello, M.A., Trevisoli, R.D., de Souza, M., Lee, C.W., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., Yu, R., Kranti, A.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8), 2511–2519 (2011)CrossRef Doria, R.T., Pavanello, M.A., Trevisoli, R.D., de Souza, M., Lee, C.W., Ferain, I., Akhavan, N.D., Yan, R., Razavi, P., Yu, R., Kranti, A.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8), 2511–2519 (2011)CrossRef
9.
Zurück zum Zitat Baruah, R.K., Paily, R.P.: A dual-material gate junctionless transistor with a high-k spacer for enhanced analog performance. IEEE Trans. Electron Devices 61(1), 123–128 (2014)CrossRef Baruah, R.K., Paily, R.P.: A dual-material gate junctionless transistor with a high-k spacer for enhanced analog performance. IEEE Trans. Electron Devices 61(1), 123–128 (2014)CrossRef
10.
Zurück zum Zitat Rios, R., Cappellani, A., Armstrong, M., Budrevich, A., Gomez, H., Pai, R., Rahhal-Orabi, N., Kuhn, K.: Comparison of junctionless and conventional tri-gate transistors with Lg down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011)CrossRef Rios, R., Cappellani, A., Armstrong, M., Budrevich, A., Gomez, H., Pai, R., Rahhal-Orabi, N., Kuhn, K.: Comparison of junctionless and conventional tri-gate transistors with Lg down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011)CrossRef
11.
Zurück zum Zitat Tan, C.M., Chen, X.: Random dopant fluctuation in gate-all-around nanowire FET. In: IEEE International Conference in Nanoelectronics, pp. 1–4 (2014) Tan, C.M., Chen, X.: Random dopant fluctuation in gate-all-around nanowire FET. In: IEEE International Conference in Nanoelectronics, pp. 1–4 (2014)
12.
Zurück zum Zitat Tang, X., De, V.K., Meindl, J.D.: Intrinsic MOSFET parameter fluctuations due to random dopant placement. IEEE Trans. Very Large Scale Integr. VLSI Syst. 5(4), 369–376 (1997)CrossRef Tang, X., De, V.K., Meindl, J.D.: Intrinsic MOSFET parameter fluctuations due to random dopant placement. IEEE Trans. Very Large Scale Integr. VLSI Syst. 5(4), 369–376 (1997)CrossRef
13.
Zurück zum Zitat Hueting, R.J.E., Rajasekharan, B., Salm, C., et al.: Charge plasma P-N diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)CrossRef Hueting, R.J.E., Rajasekharan, B., Salm, C., et al.: Charge plasma P-N diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)CrossRef
14.
Zurück zum Zitat Rajasekharan, B., Hueting, R.J., Salm, C., van Hemert, T., Wolters, R.A., Schmitz, J.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)CrossRef Rajasekharan, B., Hueting, R.J., Salm, C., van Hemert, T., Wolters, R.A., Schmitz, J.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)CrossRef
15.
Zurück zum Zitat Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef
16.
Zurück zum Zitat Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef
17.
Zurück zum Zitat Anand, S., Amin, S.I., Sarin, R.K.: Analog performance investigation of dual electrode based doping-less tunnel FET. J. Comput. Electron. 15(1), 94–103 (2016)CrossRef Anand, S., Amin, S.I., Sarin, R.K.: Analog performance investigation of dual electrode based doping-less tunnel FET. J. Comput. Electron. 15(1), 94–103 (2016)CrossRef
18.
Zurück zum Zitat Sahu, C., Singh, J.: Charge-plasma based process variation immune junctionless transistor. IEEE Electron Device Lett. 35(3), 411–413 (2014)CrossRef Sahu, C., Singh, J.: Charge-plasma based process variation immune junctionless transistor. IEEE Electron Device Lett. 35(3), 411–413 (2014)CrossRef
19.
Zurück zum Zitat Intekhab Amin, S., Sarin, R.K.: Charge-plasma based dual material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattices Microstruct. 88, 582–590 (2015)CrossRef Intekhab Amin, S., Sarin, R.K.: Charge-plasma based dual material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattices Microstruct. 88, 582–590 (2015)CrossRef
20.
Zurück zum Zitat Amin, S.I., Sarin, R.K.: Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer. Appl. Phys. A 122(4), 380 (2016)CrossRef Amin, S.I., Sarin, R.K.: Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer. Appl. Phys. A 122(4), 380 (2016)CrossRef
21.
Zurück zum Zitat Lo, S.H., Buchanan, D.A., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18(5), 209–211 (1997)CrossRef Lo, S.H., Buchanan, D.A., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18(5), 209–211 (1997)CrossRef
22.
Zurück zum Zitat Cheng, B., Cao, M., Rao, R., Inani, A., Voorde, P.V., Greene, W.M., Stork, J.M., Yu, Z., Zeitzoff, P.M., Woo, J.C.: The impact of high-/spl kappa/gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. IEEE Trans. Electron Devices 46(7), 1537–1544 (1999)CrossRef Cheng, B., Cao, M., Rao, R., Inani, A., Voorde, P.V., Greene, W.M., Stork, J.M., Yu, Z., Zeitzoff, P.M., Woo, J.C.: The impact of high-/spl kappa/gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. IEEE Trans. Electron Devices 46(7), 1537–1544 (1999)CrossRef
23.
Zurück zum Zitat Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Enhanced electrostatic integrity of short-channel junctionless transistor with high-k spacers. IEEE Electron Device Lett. 32(10), 1325–1327 (2011)CrossRef Gundapaneni, S., Ganguly, S., Kottantharayil, A.: Enhanced electrostatic integrity of short-channel junctionless transistor with high-k spacers. IEEE Electron Device Lett. 32(10), 1325–1327 (2011)CrossRef
24.
Zurück zum Zitat Sahay, S., Kumar, M.J.: Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans. Electron Devices 64(3), 1330–1335 (2017)CrossRef Sahay, S., Kumar, M.J.: Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans. Electron Devices 64(3), 1330–1335 (2017)CrossRef
25.
Zurück zum Zitat ATLAS Device Simulation Software: Silvaco International. Santa Clara, CA, USA (2014) ATLAS Device Simulation Software: Silvaco International. Santa Clara, CA, USA (2014)
26.
Zurück zum Zitat Singh, N.K., Raman, A., Singh, S., Kumar, N.: A novel high mobility In1\(-\)x Gax As cylindrical-gate-nanowire FET for gas sensing application with enhanced sensitivity. Superlattices Microstruct. 111, 518–528 (2017)CrossRef Singh, N.K., Raman, A., Singh, S., Kumar, N.: A novel high mobility In1\(-\)x Gax As cylindrical-gate-nanowire FET for gas sensing application with enhanced sensitivity. Superlattices Microstruct. 111, 518–528 (2017)CrossRef
27.
Zurück zum Zitat Trivedi, N., Kumar, M., Haldar, S., Deswal, S.S., Gupta, M., Gupta, R.S.: Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement. Appl. Phys. A 123(9), 564 (2017)CrossRef Trivedi, N., Kumar, M., Haldar, S., Deswal, S.S., Gupta, M., Gupta, R.S.: Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement. Appl. Phys. A 123(9), 564 (2017)CrossRef
28.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
Metadaten
Titel
A dopingless gate-all-around (GAA) gate-stacked nanowire FET with reduced parametric fluctuation effects
verfasst von
Sarabdeep Singh
Ashish Raman
Publikationsdatum
16.04.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1166-0

Weitere Artikel der Ausgabe 3/2018

Journal of Computational Electronics 3/2018 Zur Ausgabe

Neuer Inhalt