Skip to main content
Erschienen in: Quantum Information Processing 9/2018

01.09.2018

A dynamic multiparty quantum direct secret sharing based on generalized GHZ states

verfasst von: Yun Song, Zhihui Li, Yongming Li

Erschienen in: Quantum Information Processing | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a new dynamic multiparty quantum direct secret sharing (DQDSS) using mutually unbiased measurements based on generalized GHZ states. Without any unitary operations, an agent can obtain a shadow of the secret by simply performing a measurement on single photons. In the proposed scheme, multiple agents can be added or deleted and the shared secret need not be changed. Our DQDSS scheme has several advantages. The dealer is not required to retain any photons and can further share a predetermined key instead of a random key to the agents. Agents can update their shadows periodically, and the dealer does not need to be online. Furthermore, the proposed scheme can resist not only the existing attacks, but also cheating attacks from dishonest agents. Hence, compared to some famous DQSS schemes, the proposed scheme is more efficient and more practical. Finally, we establish a mathematical model about the efficiency and security of the scheme and perform simulation analyses with different parameters using MATLAB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Smith, A.: Multi-party quantum computation. Arxiv Cornell University Library (2001) Smith, A.: Multi-party quantum computation. Arxiv Cornell University Library (2001)
2.
Zurück zum Zitat Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16, 180 (2017)ADSMathSciNetCrossRefMATH Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16, 180 (2017)ADSMathSciNetCrossRefMATH
3.
Zurück zum Zitat Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)MathSciNetCrossRefMATH Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2011)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)ADSCrossRefMATH Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)ADSCrossRefMATH
5.
Zurück zum Zitat Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 98–108 (2014)ADS Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 98–108 (2014)ADS
6.
Zurück zum Zitat Huang, W., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China-Phys. Mech. Astron. 56, 1670–1678 (2013)ADSCrossRef Huang, W., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China-Phys. Mech. Astron. 56, 1670–1678 (2013)ADSCrossRef
7.
Zurück zum Zitat Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16, 70 (2017)ADSMathSciNetCrossRefMATH Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16, 70 (2017)ADSMathSciNetCrossRefMATH
8.
Zurück zum Zitat Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2001)ADSCrossRef Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2001)ADSCrossRef
10.
Zurück zum Zitat Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRef Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRef
11.
Zurück zum Zitat Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRef Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRef
12.
Zurück zum Zitat Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADSCrossRef Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADSCrossRef
13.
Zurück zum Zitat Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)CrossRefMATH Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)CrossRefMATH
14.
15.
16.
Zurück zum Zitat Qin, H.W., Zhu, X.H., Dai, Y.W.: A proactive quantum secret sharing scheme based on GHZ state. Mod. Phys. Lett. B 29, 550165 (2015)MathSciNetCrossRef Qin, H.W., Zhu, X.H., Dai, Y.W.: A proactive quantum secret sharing scheme based on GHZ state. Mod. Phys. Lett. B 29, 550165 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat Yu, K.F., et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16, 194 (2017)ADSMathSciNetCrossRefMATH Yu, K.F., et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16, 194 (2017)ADSMathSciNetCrossRefMATH
18.
Zurück zum Zitat Fiedler, L., Naaijkens, P., Osborne, T.J.: Jones index, secret sharing and total quantum dimension. New J. Phys. 19, 023039 (2017)ADSCrossRef Fiedler, L., Naaijkens, P., Osborne, T.J.: Jones index, secret sharing and total quantum dimension. New J. Phys. 19, 023039 (2017)ADSCrossRef
19.
Zurück zum Zitat Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)ADSCrossRef Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)ADSCrossRef
20.
Zurück zum Zitat Wang, J., Li, L., Peng, H., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSCrossRef Wang, J., Li, L., Peng, H., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSCrossRef
21.
Zurück zum Zitat Chen, X.B., Dou, Z., Xu, G., et al.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7, 39845 (2017)ADSCrossRef Chen, X.B., Dou, Z., Xu, G., et al.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7, 39845 (2017)ADSCrossRef
23.
Zurück zum Zitat Ahmadi, M., Wu, Y.D., Sanders, B.C.: Relativistic (2, 3)-threshold quantum secret sharing. Phys. Rev. D Part. Fields 96, 065018 (2017)ADSCrossRef Ahmadi, M., Wu, Y.D., Sanders, B.C.: Relativistic (2, 3)-threshold quantum secret sharing. Phys. Rev. D Part. Fields 96, 065018 (2017)ADSCrossRef
24.
Zurück zum Zitat Abulkasim, H., Hamad, S., et al.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Inf. 15, 1750023 (2017)MathSciNetCrossRefMATH Abulkasim, H., Hamad, S., et al.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Inf. 15, 1750023 (2017)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Chen, Q., Chen, J., Wang, K., Du, J.: Efficient construction of two-dimensional cluster states with probabilistic quantum gates. Phys. Rev. A 73, 012303 (2006)ADSCrossRef Chen, Q., Chen, J., Wang, K., Du, J.: Efficient construction of two-dimensional cluster states with probabilistic quantum gates. Phys. Rev. A 73, 012303 (2006)ADSCrossRef
28.
29.
Zurück zum Zitat Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)ADSCrossRefMATH Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)ADSCrossRefMATH
31.
Zurück zum Zitat Shi, R.H., Mu, Y., Zhong, H., et al.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)ADSCrossRef Shi, R.H., Mu, Y., Zhong, H., et al.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)ADSCrossRef
32.
Zurück zum Zitat Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 10064–10070 (2007)CrossRef Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75, 10064–10070 (2007)CrossRef
33.
Zurück zum Zitat Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89, 87–90 (2014) Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89, 87–90 (2014)
34.
Zurück zum Zitat Dolev, S., Pitowsky, I., Tamir, B.A.: Quantum secret ballot. Computer Science (2006) Dolev, S., Pitowsky, I., Tamir, B.A.: Quantum secret ballot. Computer Science (2006)
35.
Zurück zum Zitat Pittenge, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255–278 (2004)MathSciNetCrossRefMATH Pittenge, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255–278 (2004)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Jennewein, T., Simon, C., Weihs, G., et al.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)ADSCrossRef Jennewein, T., Simon, C., Weihs, G., et al.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)ADSCrossRef
37.
Zurück zum Zitat Beveratos, A., Brouri, R., Gacoin, T., et al.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADSCrossRef Beveratos, A., Brouri, R., Gacoin, T., et al.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADSCrossRef
38.
Zurück zum Zitat Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10 km in daylight, and at night. New J. Phys. 4, 3283–3286 (2002)CrossRef Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10 km in daylight, and at night. New J. Phys. 4, 3283–3286 (2002)CrossRef
39.
Zurück zum Zitat Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADSCrossRef Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADSCrossRef
40.
Zurück zum Zitat Shi, R.H., Huang, L.S., Yang, W., et al.: Multiparty quantum secret sharing with Bell states and Bell. Opt. Commun. 283, 2476–2480 (2010)ADSCrossRef Shi, R.H., Huang, L.S., Yang, W., et al.: Multiparty quantum secret sharing with Bell states and Bell. Opt. Commun. 283, 2476–2480 (2010)ADSCrossRef
41.
Zurück zum Zitat Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Rev. A 349, 53–58 (2006)MATH Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Rev. A 349, 53–58 (2006)MATH
42.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
43.
Zurück zum Zitat Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 521–524 (2004)CrossRef Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 521–524 (2004)CrossRef
44.
Zurück zum Zitat Barnum, H., Caves, C.M., Fuchs, C.A., et al.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)ADSCrossRef Barnum, H., Caves, C.M., Fuchs, C.A., et al.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)ADSCrossRef
Metadaten
Titel
A dynamic multiparty quantum direct secret sharing based on generalized GHZ states
verfasst von
Yun Song
Zhihui Li
Yongming Li
Publikationsdatum
01.09.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1970-2

Weitere Artikel der Ausgabe 9/2018

Quantum Information Processing 9/2018 Zur Ausgabe

Neuer Inhalt