Skip to main content
Erschienen in: Meccanica 13/2019

21.08.2019 | Mechanics of Extreme Materials

A finite-element-based coarse-grained model for global protein vibration

verfasst von: Domenico Scaramozzino, Giuseppe Lacidogna, Gianfranco Piana, Alberto Carpinteri

Erschienen in: Meccanica | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Protein mechanical vibrations play a pivotal role in biological activity. In particular, low-frequency (terahertz) modes are related to protein conformational changes, which represent the foundations for a correct protein functionality. Relying on the fact that such low-frequency motions involve large protein portions, thus modeling of local details is not necessary, coarse-grained models have proven their efficacy in capturing the essential dynamic behavior. In this paper, we show that a coarse-grained finite element space truss model is suitable for investigating protein vibrations. Hen egg-white lysozyme is selected as a case study and modal analysis is performed in order to investigate the protein dynamics; the influence of interaction cutoff values on optimal force constant, obtained vibrational frequencies and mode shapes is also explored. The validity of the structural model is demonstrated by comparing the calculated B-factors with the experimental ones. Moreover, from the methodology framework the truss model is shown to be consistent with the well-known anisotropic network model and this has been confirmed by the obtained results. The proposed truss model is then believed to be a simple yet powerful tool to investigate protein dynamics, and it could also be used to analyze conformational changes and protein stability from a Structural Mechanics viewpoint.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ovchinnikov S, Park H, Varghese N, Huang PS, Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC, Baker D (2017) Protein structure determination using metagenome sequence data. Science 355:294–298ADS Ovchinnikov S, Park H, Varghese N, Huang PS, Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC, Baker D (2017) Protein structure determination using metagenome sequence data. Science 355:294–298ADS
2.
Zurück zum Zitat Mofrad MRK, Kamm RD (2009) Cellular mechanotransduction: diverse perspectives from molecules to tissues. Cambridge University Press, Cambridge Mofrad MRK, Kamm RD (2009) Cellular mechanotransduction: diverse perspectives from molecules to tissues. Cambridge University Press, Cambridge
3.
Zurück zum Zitat Puglisi G, De Tommasi D, Pantano MF, Pugno NM, Saccomandi G (2017) Micromechanical model for protein materials: from macromolecules to macroscopic fibers. Phys Rev 96:042407 Puglisi G, De Tommasi D, Pantano MF, Pugno NM, Saccomandi G (2017) Micromechanical model for protein materials: from macromolecules to macroscopic fibers. Phys Rev 96:042407
4.
Zurück zum Zitat Maceri F, Marino M, Vairo G (2010) A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J Biomech 43:355–363 Maceri F, Marino M, Vairo G (2010) A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J Biomech 43:355–363
5.
Zurück zum Zitat Marino M, Vairo G (2014) Influence of inter-molecular interactions on the elasto-damage mechanics of collagen fibrils: a bottom-up approach towards macroscopic tissue modeling. J Mech Phys Solids 73:38–54ADSMathSciNetMATH Marino M, Vairo G (2014) Influence of inter-molecular interactions on the elasto-damage mechanics of collagen fibrils: a bottom-up approach towards macroscopic tissue modeling. J Mech Phys Solids 73:38–54ADSMathSciNetMATH
6.
Zurück zum Zitat Pandolfi A, Gizzi A, Vasta M (2019) A microstructural model of cross-link interaction between collagen fibrils in the human cornea. Philos Trans R Soc A 377:20180079ADS Pandolfi A, Gizzi A, Vasta M (2019) A microstructural model of cross-link interaction between collagen fibrils in the human cornea. Philos Trans R Soc A 377:20180079ADS
7.
Zurück zum Zitat Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA 103:14015–14020ADS Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA 103:14015–14020ADS
8.
Zurück zum Zitat Chen K, Vigliotti A, Bacca M, McMeeking R, Deshpande VS, Holmes JW (2018) Role of boundary conditions in determining cell alignment in response to stretch. Proc Natl Acad Sci USA 115:986–991 Chen K, Vigliotti A, Bacca M, McMeeking R, Deshpande VS, Holmes JW (2018) Role of boundary conditions in determining cell alignment in response to stretch. Proc Natl Acad Sci USA 115:986–991
9.
Zurück zum Zitat Shishvan SS, Vigliotti A, Deshpande VS (2018) The homeostatic ensemble for cells. Biomech Model Mechanobiol 17:1631–1662 Shishvan SS, Vigliotti A, Deshpande VS (2018) The homeostatic ensemble for cells. Biomech Model Mechanobiol 17:1631–1662
10.
Zurück zum Zitat Buskermolen ABC, Suresh H, Shishvan SS, Vigliotti A, DeSimone A, Kurniawan NA, Bouten CVC, Deshpande VS (2019) Entropic forces drive cellular contact guidance. Biophys J 116:1994–2008 Buskermolen ABC, Suresh H, Shishvan SS, Vigliotti A, DeSimone A, Kurniawan NA, Bouten CVC, Deshpande VS (2019) Entropic forces drive cellular contact guidance. Biophys J 116:1994–2008
11.
Zurück zum Zitat Yang LQ, Sang P, Tao Y, Fu YX, Zhang KQ, Xie YH, Liu SQ (2014) Protein dynamics and motions in relation to their functions: several case studies and the underlying mechanisms. J Biomol Struct Dyn 32:372–393 Yang LQ, Sang P, Tao Y, Fu YX, Zhang KQ, Xie YH, Liu SQ (2014) Protein dynamics and motions in relation to their functions: several case studies and the underlying mechanisms. J Biomol Struct Dyn 32:372–393
12.
Zurück zum Zitat Dykeman EC, Sankey OF (2010) Normal mode analysis and applications in biological physics. J Phys Condens Matter 22:423202ADS Dykeman EC, Sankey OF (2010) Normal mode analysis and applications in biological physics. J Phys Condens Matter 22:423202ADS
13.
Zurück zum Zitat Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol 181:423447 Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol 181:423447
14.
Zurück zum Zitat Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908ADS Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908ADS
15.
Zurück zum Zitat Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181 Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181
16.
Zurück zum Zitat Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins Struct Funct Genet 33:417–429 Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins Struct Funct Genet 33:417–429
17.
Zurück zum Zitat Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515 Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515
18.
Zurück zum Zitat Nicolai A, Delarue P, Senet P (2014) Low-frequency, functional, modes of proteins: all-atom and coarse-grained normal mode analysis. In: Liwo A (ed) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes. Springer Series in Bio-/Neuroinformatics. Springer, Berlin Nicolai A, Delarue P, Senet P (2014) Low-frequency, functional, modes of proteins: all-atom and coarse-grained normal mode analysis. In: Liwo A (ed) Computational methods to study the structure and dynamics of biomolecules and biomolecular processes. Springer Series in Bio-/Neuroinformatics. Springer, Berlin
19.
Zurück zum Zitat Wako H, Endo S (2017) Normal mode analysis as a method to derive protein dynamics information from the Protein Data Bank. Biophys Rev 9:877–893 Wako H, Endo S (2017) Normal mode analysis as a method to derive protein dynamics information from the Protein Data Bank. Biophys Rev 9:877–893
20.
Zurück zum Zitat Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150 Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150
21.
Zurück zum Zitat Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592 Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592
22.
Zurück zum Zitat Rader AJ (2010) Coarse-grained models: getting more with less. Curr Opin Pharmacol 10:753–759 Rader AJ (2010) Coarse-grained models: getting more with less. Curr Opin Pharmacol 10:753–759
23.
Zurück zum Zitat Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22:130–137 Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22:130–137
24.
Zurück zum Zitat Chou KC, Chen NY (1977) The biological functions of low-frequency phonons. Sci Sin 20:447–457 Chou KC, Chen NY (1977) The biological functions of low-frequency phonons. Sci Sin 20:447–457
25.
Zurück zum Zitat Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6 Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1–6
26.
Zurück zum Zitat Zheng W, Brooks BR (2005) Normal-mode-based prediction of protein conformational changes guided by distance constraints. Biophys J 88:3109–3117 Zheng W, Brooks BR (2005) Normal-mode-based prediction of protein conformational changes guided by distance constraints. Biophys J 88:3109–3117
27.
Zurück zum Zitat Petrone P, Pande VS (2006) Can conformational change be described by only a few normal modes? Biophys J 90:1583–1593 Petrone P, Pande VS (2006) Can conformational change be described by only a few normal modes? Biophys J 90:1583–1593
28.
Zurück zum Zitat Mahajan S, Sanejouand YH (2015) On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch Biochem Biophys 567:59–65 Mahajan S, Sanejouand YH (2015) On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch Biochem Biophys 567:59–65
29.
Zurück zum Zitat Nicolai A, Barakat F, Delarue P, Senet P (2016) Fingerprints of conformational states of human Hsp70 at sub-THz frequencies. ACS Omega 1:1067–1074 Nicolai A, Barakat F, Delarue P, Senet P (2016) Fingerprints of conformational states of human Hsp70 at sub-THz frequencies. ACS Omega 1:1067–1074
30.
Zurück zum Zitat Lucia U (2016) Electromagnetic waves and living cells: a kinetic thermodynamic approach. Phys A 461:577–585ADSMathSciNetMATH Lucia U (2016) Electromagnetic waves and living cells: a kinetic thermodynamic approach. Phys A 461:577–585ADSMathSciNetMATH
31.
Zurück zum Zitat Lucia U, Grisolia G, Ponzetto A, Silvagno F (2017) An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. J Theor Biol 429:181–189 Lucia U, Grisolia G, Ponzetto A, Silvagno F (2017) An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. J Theor Biol 429:181–189
32.
Zurück zum Zitat Lucia U, Ponzetto A (2017) Some thermodynamic considerations on low frequency electromagnetic waves effects on cancer invasion and metastasis. Phys A 467:289–295 Lucia U, Ponzetto A (2017) Some thermodynamic considerations on low frequency electromagnetic waves effects on cancer invasion and metastasis. Phys A 467:289–295
33.
Zurück zum Zitat Barth A (2007) Infrared spectroscopy of proteins. Biochem Biophys Acta 1767:1073–1101 Barth A (2007) Infrared spectroscopy of proteins. Biochem Biophys Acta 1767:1073–1101
34.
Zurück zum Zitat Acbas G, Niessen KA, Snell EH, Markelz AG (2014) Optical measurements of long-range protein vibrations. Nat Commun 5:3076ADS Acbas G, Niessen KA, Snell EH, Markelz AG (2014) Optical measurements of long-range protein vibrations. Nat Commun 5:3076ADS
35.
Zurück zum Zitat Xie L, Yao Y, Ying Y (2014) The application of terahertz spectroscopy to protein detection: a review. Appl Spectrosc Rev 49:448–461ADS Xie L, Yao Y, Ying Y (2014) The application of terahertz spectroscopy to protein detection: a review. Appl Spectrosc Rev 49:448–461ADS
36.
Zurück zum Zitat Brown KG, Erfurth SC, Small EW, Peticolas WL (1972) Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc Natl Acad Sci USA 69:1467–1469ADS Brown KG, Erfurth SC, Small EW, Peticolas WL (1972) Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc Natl Acad Sci USA 69:1467–1469ADS
37.
Zurück zum Zitat Painter PC, Mosher LE, Rhoads C (1982) Low-frequency modes in the Raman spectra of proteins. Biopolymers 21:1469–1472 Painter PC, Mosher LE, Rhoads C (1982) Low-frequency modes in the Raman spectra of proteins. Biopolymers 21:1469–1472
38.
Zurück zum Zitat Carpinteri A, Lacidogna G, Piana G, Bassani A (2017) Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis. J Mol Struct 1139:222–230ADS Carpinteri A, Lacidogna G, Piana G, Bassani A (2017) Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis. J Mol Struct 1139:222–230ADS
39.
Zurück zum Zitat Lacidogna G, Piana G, Bassani A, Carpinteri A (2017) Raman spectroscopy of Na/K-ATPase with special focus on low-frequency vibrations. Vib Spectrosc 92:298–301 Lacidogna G, Piana G, Bassani A, Carpinteri A (2017) Raman spectroscopy of Na/K-ATPase with special focus on low-frequency vibrations. Vib Spectrosc 92:298–301
40.
Zurück zum Zitat Carpinteri A, Piana G, Bassani A, Lacidogna G (2019) Terahertz vibration modes in Na/K-ATPase. J Biomol Struct Dyn 37:256–264 Carpinteri A, Piana G, Bassani A, Lacidogna G (2019) Terahertz vibration modes in Na/K-ATPase. J Biomol Struct Dyn 37:256–264
42.
Zurück zum Zitat Eyal E, Yang LW, Bahar I (2006) Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22:2619–2627 Eyal E, Yang LW, Bahar I (2006) Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22:2619–2627
43.
Zurück zum Zitat Eyal E, Lum G, Bahar I (2015) The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31:1487–1489 Eyal E, Lum G, Bahar I (2015) The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31:1487–1489
45.
Zurück zum Zitat Carpinteri A (2017) Advanced structural mechanics. CRC Press, Taylor & Francis Group, Boca Raton Carpinteri A (2017) Advanced structural mechanics. CRC Press, Taylor & Francis Group, Boca Raton
46.
Zurück zum Zitat Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: Proceedings of the 1st IMAC, Orlando Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: Proceedings of the 1st IMAC, Orlando
47.
Zurück zum Zitat Pastor M, Binda M, Harcarik T (2012) Modal assurance criterion. Proc Eng 48:543–548 Pastor M, Binda M, Harcarik T (2012) Modal assurance criterion. Proc Eng 48:543–548
48.
Zurück zum Zitat Piana G, Lofrano E, Carpinteri A, Paolone A, Ruta G (2016) Experimental modal analysis of straight and curved slender beams by piezoelectric transducers. Meccanica 51:2797–2811 Piana G, Lofrano E, Carpinteri A, Paolone A, Ruta G (2016) Experimental modal analysis of straight and curved slender beams by piezoelectric transducers. Meccanica 51:2797–2811
49.
Zurück zum Zitat Markelz A, Whitmire S, Hillebrecht J, Birge R (2002) THz time domain spectroscopy of biomolecular conformational modes. Phys Med Biol 47:3797–3805 Markelz A, Whitmire S, Hillebrecht J, Birge R (2002) THz time domain spectroscopy of biomolecular conformational modes. Phys Med Biol 47:3797–3805
Metadaten
Titel
A finite-element-based coarse-grained model for global protein vibration
verfasst von
Domenico Scaramozzino
Giuseppe Lacidogna
Gianfranco Piana
Alberto Carpinteri
Publikationsdatum
21.08.2019
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 13/2019
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-01037-9

Weitere Artikel der Ausgabe 13/2019

Meccanica 13/2019 Zur Ausgabe

Mechanics of Extreme Materials

Editorial

Mechanics of Extreme Materials

Cosserat elastic lattices

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.