Skip to main content
Erschienen in: Meccanica 13/2019

31.07.2019 | Mechanics of Extreme Materials

Atomistic simulation study on the crack growth stability of graphene under uniaxial tension and indentation

verfasst von: Sangryun Lee, Nicola M. Pugno, Seunghwa Ryu

Erschienen in: Meccanica | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Combining a series of atomistic simulations with fracture mechanics theory, we systematically investigate the crack growth stability of graphene under tension and indentation, with a pre-existing crack made by two methods: atom removal and (artificial) bonding removal. In the tension, the monotonically increasing energy release rate \(G\) is consistent with the unstable crack growth. In contrast, the non-monotonic \(G\) with a maximum for indentation explains the transition from unstable to stable crack growth when the crack length is comparable to the diameter of the contact zone. We also find that the crack growth stability within a stable crack growth regime can be significantly affected by the crack tip sharpness even down to a single atom scale. A crack made by atom removal starts to grow at a higher indentation force than the ultimately sharp crack made by bonding removal, which leads to a large force drop at the onset of the crack growth that can cause unstable crack growth under indentation with force control. In addition, we investigate the effect of the offset distance between the indenter and the crack to the indentation fracture force and find that the graphene with a smaller initial crack is more sensitive. The findings reported in this study can be applied to other related 2D materials because crack growth stability is determined primarily by the geometrical factors of the mechanical loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493ADS Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493ADS
2.
Zurück zum Zitat Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388ADS Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388ADS
3.
Zurück zum Zitat Koenig SP, Boddeti NG, Dunn ML, Bunch JS (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6(9):543–546ADS Koenig SP, Boddeti NG, Dunn ML, Bunch JS (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6(9):543–546ADS
4.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669ADS Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669ADS
5.
Zurück zum Zitat Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204ADS Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204ADS
6.
Zurück zum Zitat Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907ADS Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907ADS
7.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581ADS Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581ADS
8.
Zurück zum Zitat Zaman I, Phan TT, Kuan HC, Meng QS, La LTB, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7):1603–1611 Zaman I, Phan TT, Kuan HC, Meng QS, La LTB, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7):1603–1611
9.
Zurück zum Zitat Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song HH, Yu ZZ, Koratkar N (2010) Fracture and Fatigue in Graphene Nanocomposites. Small 6(2):179–183 Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song HH, Yu ZZ, Koratkar N (2010) Fracture and Fatigue in Graphene Nanocomposites. Small 6(2):179–183
10.
Zurück zum Zitat Yang XW, Cheng C, Wang YF, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145):534–537ADS Yang XW, Cheng C, Wang YF, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145):534–537ADS
11.
Zurück zum Zitat Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279ADS Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279ADS
12.
Zurück zum Zitat Li XS, Zhu YW, Cai WW, Borysiak M, Han BY, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363ADS Li XS, Zhu YW, Cai WW, Borysiak M, Han BY, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363ADS
13.
Zurück zum Zitat Gomez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196(8):4102–4108 Gomez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196(8):4102–4108
14.
Zurück zum Zitat Berciaud S, Ryu S, Brus LE, Heinz TF (2009) Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett 9(1):346–352ADS Berciaud S, Ryu S, Brus LE, Heinz TF (2009) Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett 9(1):346–352ADS
15.
Zurück zum Zitat Garcia-Sanchez D, van der Zande AM, Paulo AS, Lassagne B, McEuen PL, Bachtold A (2008) Imaging mechanical vibrations in suspended graphene sheets. Nano Lett 8(5):1399–1403ADS Garcia-Sanchez D, van der Zande AM, Paulo AS, Lassagne B, McEuen PL, Bachtold A (2008) Imaging mechanical vibrations in suspended graphene sheets. Nano Lett 8(5):1399–1403ADS
16.
Zurück zum Zitat Cao HL, Yu QK, Jauregui LA, Tian J, Wu W, Liu Z, Jalilian R, Benjamin DK, Jiang Z, Bao J, Pei SS, Chen YP (2010) Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization. Appl Phys Lett 96(25):122106ADS Cao HL, Yu QK, Jauregui LA, Tian J, Wu W, Liu Z, Jalilian R, Benjamin DK, Jiang Z, Bao J, Pei SS, Chen YP (2010) Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization. Appl Phys Lett 96(25):122106ADS
17.
Zurück zum Zitat Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35ADS Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35ADS
18.
Zurück zum Zitat Han J, Pugno NM, Ryu S (2015) Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials. Nanoscale 7(38):15672–15679ADS Han J, Pugno NM, Ryu S (2015) Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials. Nanoscale 7(38):15672–15679ADS
19.
Zurück zum Zitat Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006):946–948ADS Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006):946–948ADS
20.
Zurück zum Zitat Han J, Ryu S, Sohn D, Im S (2014) Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene. Carbon 68:250–257 Han J, Ryu S, Sohn D, Im S (2014) Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene. Carbon 68:250–257
21.
Zurück zum Zitat Wei YJ, Wu JT, Yin HQ, Shi XH, Yang RG, Dresselhaus M (2012) The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat Mater 11(9):759–763ADS Wei YJ, Wu JT, Yin HQ, Shi XH, Yang RG, Dresselhaus M (2012) The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat Mater 11(9):759–763ADS
22.
Zurück zum Zitat Liu TH, Pao CW, Chang CC (2012) Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon 50(10):3465–3472 Liu TH, Pao CW, Chang CC (2012) Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon 50(10):3465–3472
23.
Zurück zum Zitat Yi LJ, Yin ZN, Zhang YY, Chang TC (2013) A theoretical evaluation of the temperature and strain-rate dependent fracture strength of tilt grain boundaries in graphene. Carbon 51:373–380 Yi LJ, Yin ZN, Zhang YY, Chang TC (2013) A theoretical evaluation of the temperature and strain-rate dependent fracture strength of tilt grain boundaries in graphene. Carbon 51:373–380
24.
Zurück zum Zitat Lee G-H, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J (2013) High-strength chemical-vapor–deposited graphene and grain boundaries. Science 340(6136):1073ADS Lee G-H, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J (2013) High-strength chemical-vapor–deposited graphene and grain boundaries. Science 340(6136):1073ADS
25.
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63ADS Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63ADS
26.
Zurück zum Zitat Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5(3):2142–2146 Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5(3):2142–2146
27.
Zurück zum Zitat Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013) Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun 4:2811ADS Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013) Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun 4:2811ADS
28.
Zurück zum Zitat Han J, Ryu S, Sohn D (2016) A feasibility study on the fracture strength measurement of polycrystalline graphene using nanoindentation with a cylindrical indenter. Carbon 107:310–318 Han J, Ryu S, Sohn D (2016) A feasibility study on the fracture strength measurement of polycrystalline graphene using nanoindentation with a cylindrical indenter. Carbon 107:310–318
29.
Zurück zum Zitat Zhang P, Ma LL, Fan FF, Zeng Z, Peng C, Loya PE, Liu Z, Gong YJ, Zhang JN, Zhang XX, Ajayan PM, Zhu T, Lou J (2014) Fracture toughness of graphene. Nat Commun 5:3782 Zhang P, Ma LL, Fan FF, Zeng Z, Peng C, Loya PE, Liu Z, Gong YJ, Zhang JN, Zhang XX, Ajayan PM, Zhu T, Lou J (2014) Fracture toughness of graphene. Nat Commun 5:3782
31.
Zurück zum Zitat Pugno NM, Ruoff RS (2004) Quantized fracture mechanics. Philos Mag 84(27):2829–2845ADS Pugno NM, Ruoff RS (2004) Quantized fracture mechanics. Philos Mag 84(27):2829–2845ADS
32.
Zurück zum Zitat Han J, Sohn D, Woo W, Kim DK (2017) Molecular dynamics study of fracture toughness and trans-intergranular transition in bi-crystalline graphene. Comp Mater Sci 129:323–331 Han J, Sohn D, Woo W, Kim DK (2017) Molecular dynamics study of fracture toughness and trans-intergranular transition in bi-crystalline graphene. Comp Mater Sci 129:323–331
33.
Zurück zum Zitat Yin HQ, Qi HJ, Fan FF, Zhu T, Wang BL, Wei YJ (2015) Griffith criterion for brittle fracture in graphene. Nano Lett 15(3):1918–1924ADS Yin HQ, Qi HJ, Fan FF, Zhu T, Wang BL, Wei YJ (2015) Griffith criterion for brittle fracture in graphene. Nano Lett 15(3):1918–1924ADS
34.
Zurück zum Zitat Zhao H, Aluru NR (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108(6):064321ADS Zhao H, Aluru NR (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108(6):064321ADS
35.
Zurück zum Zitat Meng FC, Chen C, Song J (2017) Lattice trapping and crack decohesion in graphene. Carbon 116:33–39 Meng FC, Chen C, Song J (2017) Lattice trapping and crack decohesion in graphene. Carbon 116:33–39
36.
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19ADSMATH Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19ADSMATH
37.
Zurück zum Zitat Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486ADS Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486ADS
38.
Zurück zum Zitat Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877–3888ADS Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877–3888ADS
39.
Zurück zum Zitat Costescu BI, Grater F (2014) Graphene mechanics: II. Atomic stress distribution during indentation until rupture. Phys Chem Chem Phys 16(24):12582–12590 Costescu BI, Grater F (2014) Graphene mechanics: II. Atomic stress distribution during indentation until rupture. Phys Chem Chem Phys 16(24):12582–12590
40.
Zurück zum Zitat Umeno Y, Yachi Y, Sato M, Shima H (2019) On the atomistic energetics of carbon nanotube collapse from AIREBO potential. Physica E 106:319–325ADS Umeno Y, Yachi Y, Sato M, Shima H (2019) On the atomistic energetics of carbon nanotube collapse from AIREBO potential. Physica E 106:319–325ADS
43.
Zurück zum Zitat Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7(9):2758–2763ADS Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX (2007) Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 7(9):2758–2763ADS
44.
Zurück zum Zitat Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Mod Simul Mater Sc 18(1):015012ADS Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Mod Simul Mater Sc 18(1):015012ADS
45.
Zurück zum Zitat Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonMATH Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, Boca RatonMATH
Metadaten
Titel
Atomistic simulation study on the crack growth stability of graphene under uniaxial tension and indentation
verfasst von
Sangryun Lee
Nicola M. Pugno
Seunghwa Ryu
Publikationsdatum
31.07.2019
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 13/2019
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-01027-x

Weitere Artikel der Ausgabe 13/2019

Meccanica 13/2019 Zur Ausgabe

Mechanics of Extreme Materials

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.