Skip to main content
Erschienen in: Engineering with Computers 3/2017

11.10.2016 | Original Article

A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives

verfasst von: Mehdi Dehghan, Mostafa Abbaszadeh

Erschienen in: Engineering with Computers | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our main aim in the current paper is to find a numerical plan for 2D Rayleigh–Stokes model with fractional derivative on irregular domains such as circular, L-shaped and a unit square with a circular and square hole. The employed fractional derivative is the Riemann–Liouville sense. Also, by integrating the equation corresponding to the time variable and then using the Galerkin FEM for the space direction, we obtain a full discrete scheme. The unconditional stability and the convergence estimate of the new scheme have been concluded. Finally, we evaluate results of Galerkin FEM with other numerical methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhrawy AH, Alofi AS (2014) An accurate spectral Galerkin method for solving multiterm fractional differential equations. Math Probl Eng:8 (Article ID: 728736) Bhrawy AH, Alofi AS (2014) An accurate spectral Galerkin method for solving multiterm fractional differential equations. Math Probl Eng:8 (Article ID: 728736)
2.
Zurück zum Zitat Bagley R, Torvik P (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210CrossRefMATH Bagley R, Torvik P (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210CrossRefMATH
3.
Zurück zum Zitat Bazhlekov E, Jin B, Lazarov R, Zhou Z (2015) An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer Math 131:1–31MathSciNetCrossRefMATH Bazhlekov E, Jin B, Lazarov R, Zhou Z (2015) An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer Math 131:1–31MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bose D, Basu U (2015) Unsteady incompressible flow of a generalized Oldroyd-B Fluid between two-oscillating infinite parallel plates in presence of a transverse magnetic field. Appl Math 6:106–115CrossRef Bose D, Basu U (2015) Unsteady incompressible flow of a generalized Oldroyd-B Fluid between two-oscillating infinite parallel plates in presence of a transverse magnetic field. Appl Math 6:106–115CrossRef
5.
Zurück zum Zitat Chen CM, Liu F, Turner I, Anh V (2007) A Fourier method for the fractional diffusion equation describing sub-diffusion. J Comput Phys 227:886–897MathSciNetCrossRefMATH Chen CM, Liu F, Turner I, Anh V (2007) A Fourier method for the fractional diffusion equation describing sub-diffusion. J Comput Phys 227:886–897MathSciNetCrossRefMATH
6.
Zurück zum Zitat Chen CM, Liu F, Burrage K (2008) Finite difference methods and a Fuorier analysis for the fractional reaction-subdiffusion equation. Appl Math Comput 198:754–769MathSciNetMATH Chen CM, Liu F, Burrage K (2008) Finite difference methods and a Fuorier analysis for the fractional reaction-subdiffusion equation. Appl Math Comput 198:754–769MathSciNetMATH
7.
Zurück zum Zitat Chen CM, Liu F, Anh V (2008) Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl Math Comput 204:340–351MathSciNetMATH Chen CM, Liu F, Anh V (2008) Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl Math Comput 204:340–351MathSciNetMATH
8.
Zurück zum Zitat Chen CM, Liu F, Turner I, Anh V (2011) Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’first problem for a heated generalized second grade fluid. Comput Math Appl 62:971–986MathSciNetCrossRefMATH Chen CM, Liu F, Turner I, Anh V (2011) Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’first problem for a heated generalized second grade fluid. Comput Math Appl 62:971–986MathSciNetCrossRefMATH
9.
Zurück zum Zitat Chen S, Liu F, Zhuang P, Anh V (2009) Finite difference approximations for the fractional Fokker-Planck equation. Appl Math Model 33:256–273MathSciNetCrossRefMATH Chen S, Liu F, Zhuang P, Anh V (2009) Finite difference approximations for the fractional Fokker-Planck equation. Appl Math Model 33:256–273MathSciNetCrossRefMATH
10.
Zurück zum Zitat Chen S, Liu F, Turner I, Anh V (2013) An implicit numerical method for the two-dimensional fractional percolation equation. Appl Math Comput 219:4322–4331MathSciNetMATH Chen S, Liu F, Turner I, Anh V (2013) An implicit numerical method for the two-dimensional fractional percolation equation. Appl Math Comput 219:4322–4331MathSciNetMATH
11.
12.
Zurück zum Zitat Cui MR (2013) Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer Algorithms 62:383–409MathSciNetCrossRefMATH Cui MR (2013) Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer Algorithms 62:383–409MathSciNetCrossRefMATH
13.
Zurück zum Zitat Cui MR (2012) Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J Comput Phys 231:2621–2633MathSciNetCrossRefMATH Cui MR (2012) Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J Comput Phys 231:2621–2633MathSciNetCrossRefMATH
14.
Zurück zum Zitat Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30MathSciNetCrossRefMATH Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30MathSciNetCrossRefMATH
15.
Zurück zum Zitat Dehghan M, Safarpoor M, Abbaszadeh M (2015) Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math 290:174–195MathSciNetCrossRefMATH Dehghan M, Safarpoor M, Abbaszadeh M (2015) Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J Comput Appl Math 290:174–195MathSciNetCrossRefMATH
16.
Zurück zum Zitat Dehghan M, Abbaszadeh M, Mohebbi A (2015) Meshless local Petrov-Galerkin and RBFs collocation methods for solving 2D fractional Klein-Kramers dynamics equation on irregular domains. Comput Model Eng Sci 107(6):481–516 Dehghan M, Abbaszadeh M, Mohebbi A (2015) Meshless local Petrov-Galerkin and RBFs collocation methods for solving 2D fractional Klein-Kramers dynamics equation on irregular domains. Comput Model Eng Sci 107(6):481–516
17.
Zurück zum Zitat Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the Homotopy analysis method. Numer Methods Partial Differ Equations 26:448–479MathSciNetMATH Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the Homotopy analysis method. Numer Methods Partial Differ Equations 26:448–479MathSciNetMATH
18.
19.
Zurück zum Zitat Deng W, Li CP (2008) The evolution of chaotic dynamics for fractional unified system. Phys Lett A 372:401–407CrossRefMATH Deng W, Li CP (2008) The evolution of chaotic dynamics for fractional unified system. Phys Lett A 372:401–407CrossRefMATH
21.
Zurück zum Zitat Ding HF, Li CP, Chen YQ (2016) High-order algorithms for Riesz derivative and their applications (II). J Comput Phys (in press) Ding HF, Li CP, Chen YQ (2016) High-order algorithms for Riesz derivative and their applications (II). J Comput Phys (in press)
22.
Zurück zum Zitat Ding HF, Li CP (2013) Numerical algorithms for the fractional diffusion-wave equation with reaction term. Abstr Appl Anal 493406:15MathSciNetMATH Ding HF, Li CP (2013) Numerical algorithms for the fractional diffusion-wave equation with reaction term. Abstr Appl Anal 493406:15MathSciNetMATH
23.
Zurück zum Zitat Doha EH, Bhrawy AH, Ezz-Eldien SS (2011) Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl Math Model 35:5662–5672MathSciNetCrossRefMATH Doha EH, Bhrawy AH, Ezz-Eldien SS (2011) Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl Math Model 35:5662–5672MathSciNetCrossRefMATH
24.
Zurück zum Zitat Du R, Cao WR, Sun ZZ (2010) A compact difference scheme for the fractional diffusion-wave equation. Appl Math Model 34:2998–3007MathSciNetCrossRefMATH Du R, Cao WR, Sun ZZ (2010) A compact difference scheme for the fractional diffusion-wave equation. Appl Math Model 34:2998–3007MathSciNetCrossRefMATH
25.
Zurück zum Zitat Esmaeili S, Shamsi M (2011) A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun Nonlinear Sci Numer Simul 16:3646–3654MathSciNetCrossRefMATH Esmaeili S, Shamsi M (2011) A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun Nonlinear Sci Numer Simul 16:3646–3654MathSciNetCrossRefMATH
26.
Zurück zum Zitat Fix GJ, Roop JP (2004) Least squares finite element solution of a fractional order two-point boundary value problem. Comput Math Appl 48:1017–1033MathSciNetCrossRefMATH Fix GJ, Roop JP (2004) Least squares finite element solution of a fractional order two-point boundary value problem. Comput Math Appl 48:1017–1033MathSciNetCrossRefMATH
27.
Zurück zum Zitat Fetecau C, Jamil M, Fetecau C, Vieru D (2009) The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid. Z Angew Math Phys 60:921–933MathSciNetCrossRefMATH Fetecau C, Jamil M, Fetecau C, Vieru D (2009) The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid. Z Angew Math Phys 60:921–933MathSciNetCrossRefMATH
28.
Zurück zum Zitat Ford NJ, Xiao J, Yan Y (2011) A finite element method for time fractional partial differential equaions. Fract Calc Appl Anal 14:454–474MathSciNetMATH Ford NJ, Xiao J, Yan Y (2011) A finite element method for time fractional partial differential equaions. Fract Calc Appl Anal 14:454–474MathSciNetMATH
29.
Zurück zum Zitat Hejazi H, Moroney T, Liu F (2014) Stability and convergence of a finite volume method for the space fractional advection-dispersion equation. J Comput Appl Math 255:684–697MathSciNetCrossRefMATH Hejazi H, Moroney T, Liu F (2014) Stability and convergence of a finite volume method for the space fractional advection-dispersion equation. J Comput Appl Math 255:684–697MathSciNetCrossRefMATH
30.
Zurück zum Zitat Huang Q, Huang G, Zhan H (2008) A finite element solution for the fractional advection-dispersion equation. Adv Water Resour 31:1578–1589CrossRef Huang Q, Huang G, Zhan H (2008) A finite element solution for the fractional advection-dispersion equation. Adv Water Resour 31:1578–1589CrossRef
31.
Zurück zum Zitat Jiang Y, Ma J (2011) High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math 235:3285–3290MathSciNetCrossRefMATH Jiang Y, Ma J (2011) High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math 235:3285–3290MathSciNetCrossRefMATH
32.
Zurück zum Zitat Lakestani M, Dehghan M, Irandoust-Pakchin S (2012) The construction of operational matrix of fractional derivatives using B-spline functions. Commun Nonlinear Sci Numer Simul 17:1149–1162MathSciNetCrossRefMATH Lakestani M, Dehghan M, Irandoust-Pakchin S (2012) The construction of operational matrix of fractional derivatives using B-spline functions. Commun Nonlinear Sci Numer Simul 17:1149–1162MathSciNetCrossRefMATH
33.
Zurück zum Zitat Li CP, Zhao ZG, Chen YQ (2011) Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput Math Appl 62:855–875MathSciNetCrossRefMATH Li CP, Zhao ZG, Chen YQ (2011) Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput Math Appl 62:855–875MathSciNetCrossRefMATH
34.
Zurück zum Zitat Li CP, Ding H (2014) Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl Math Model 38:3802–3821MathSciNetCrossRef Li CP, Ding H (2014) Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl Math Model 38:3802–3821MathSciNetCrossRef
35.
Zurück zum Zitat Li CP, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230:3352–3368MathSciNetCrossRefMATH Li CP, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230:3352–3368MathSciNetCrossRefMATH
36.
38.
Zurück zum Zitat Li CP, Yan JP (2007) The synchronization of three fractional differential systems. Chaos Solitons Fractals 32:751–757CrossRef Li CP, Yan JP (2007) The synchronization of three fractional differential systems. Chaos Solitons Fractals 32:751–757CrossRef
39.
Zurück zum Zitat Li CP, Wang Y (2009) Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput Math Appl 57:1672–1681MathSciNetCrossRefMATH Li CP, Wang Y (2009) Numerical algorithm based on Adomian decomposition for fractional differential equations. Comput Math Appl 57:1672–1681MathSciNetCrossRefMATH
40.
Zurück zum Zitat Lin Y, Li X, Xu C (2011) Finite difference/spectral approximations for the fractional cable equation. Math Comput 80:1369–1396MathSciNetCrossRefMATH Lin Y, Li X, Xu C (2011) Finite difference/spectral approximations for the fractional cable equation. Math Comput 80:1369–1396MathSciNetCrossRefMATH
41.
Zurück zum Zitat Liu F, Anh V, Turner I (2004) Numerical solution of the space fractional Fokker-Planck equation. J Comput Appl Math 166:209–219MathSciNetCrossRefMATH Liu F, Anh V, Turner I (2004) Numerical solution of the space fractional Fokker-Planck equation. J Comput Appl Math 166:209–219MathSciNetCrossRefMATH
42.
Zurück zum Zitat Liu F, Zhuang P, Turner I, Anh V, Burrage K (2015) A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain. J Comput Phys 293:252–263MathSciNetCrossRefMATH Liu F, Zhuang P, Turner I, Anh V, Burrage K (2015) A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain. J Comput Phys 293:252–263MathSciNetCrossRefMATH
43.
Zurück zum Zitat Liu F, Yang C, Burrage K (2009) Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J Comput Appl Math 231:160–176MathSciNetCrossRefMATH Liu F, Yang C, Burrage K (2009) Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J Comput Appl Math 231:160–176MathSciNetCrossRefMATH
44.
Zurück zum Zitat Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput 191:12–20MathSciNetMATH Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput 191:12–20MathSciNetMATH
45.
Zurück zum Zitat Kharazmi E, Zayernouri M, Karniadakis GE (2016) Petrov-Galerkin and Spectral Collocation Methods for distributed Order Differential Equations. arXiv:1604.08650 (preprint) Kharazmi E, Zayernouri M, Karniadakis GE (2016) Petrov-Galerkin and Spectral Collocation Methods for distributed Order Differential Equations. arXiv:​1604.​08650 (preprint)
46.
Zurück zum Zitat Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 37:R161–208MathSciNetCrossRefMATH Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 37:R161–208MathSciNetCrossRefMATH
47.
Zurück zum Zitat Miller KS, Ross B (1974) An introductional to the fractional calculus and fractional differential equations. Academic Press, New York, London Miller KS, Ross B (1974) An introductional to the fractional calculus and fractional differential equations. Academic Press, New York, London
48.
Zurück zum Zitat Mohebbi A, Dehghan M (2009) The use of compact boundary value method for the solution of two-dimensional Schrödinger equation. J Comput Appl Math 225:124–134MathSciNetCrossRefMATH Mohebbi A, Dehghan M (2009) The use of compact boundary value method for the solution of two-dimensional Schrödinger equation. J Comput Appl Math 225:124–134MathSciNetCrossRefMATH
49.
Zurück zum Zitat Mohebbi A, Abbaszadeh M, Dehghan M (2013) Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methods Appl Mech Eng 264:163–177MathSciNetCrossRefMATH Mohebbi A, Abbaszadeh M, Dehghan M (2013) Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methods Appl Mech Eng 264:163–177MathSciNetCrossRefMATH
50.
Zurück zum Zitat Mustapha K, McLean W (2011) Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algorithms 56:159–184MathSciNetCrossRefMATH Mustapha K, McLean W (2011) Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer Algorithms 56:159–184MathSciNetCrossRefMATH
51.
Zurück zum Zitat Mustapha K, McLean W (2013) Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J Numer Anal 51:491–515MathSciNetCrossRefMATH Mustapha K, McLean W (2013) Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J Numer Anal 51:491–515MathSciNetCrossRefMATH
52.
Zurück zum Zitat Odibat ZM (2009) Computational algorithms for computing the fractional derivatives of functions. Math Comput Simul 79:2013–2020MathSciNetCrossRefMATH Odibat ZM (2009) Computational algorithms for computing the fractional derivatives of functions. Math Comput Simul 79:2013–2020MathSciNetCrossRefMATH
53.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus: theory and application of differentiation and integration to arbitrary order. Academic Press, New YorkMATH Oldham KB, Spanier J (1974) The fractional calculus: theory and application of differentiation and integration to arbitrary order. Academic Press, New YorkMATH
54.
Zurück zum Zitat Langlands TAM, Henry BI (2005) The accuracy and stability of an implicit solution method for the fractional diffusion equation. J Comput Phys 205:719–736MathSciNetCrossRefMATH Langlands TAM, Henry BI (2005) The accuracy and stability of an implicit solution method for the fractional diffusion equation. J Comput Phys 205:719–736MathSciNetCrossRefMATH
55.
Zurück zum Zitat Parvizi M, Eslahchi MR, Dehghan M (2015) Numerical solution of fractional advection-diffusion equation with a nonlinear source term. Numer Algorithms 68:601–629MathSciNetCrossRefMATH Parvizi M, Eslahchi MR, Dehghan M (2015) Numerical solution of fractional advection-diffusion equation with a nonlinear source term. Numer Algorithms 68:601–629MathSciNetCrossRefMATH
56.
Zurück zum Zitat Podulbny I (1999) Fractional Differential Equations. Academic Press, New York Podulbny I (1999) Fractional Differential Equations. Academic Press, New York
57.
Zurück zum Zitat Pozrikidis C (2005) Introduction to finite and spectral element methods Using Matlab. Chapman and Hall/CRC, UKMATH Pozrikidis C (2005) Introduction to finite and spectral element methods Using Matlab. Chapman and Hall/CRC, UKMATH
58.
Zurück zum Zitat Qi HT, Xu MY (2007) Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta Mech Sin 23:463–469MathSciNetCrossRefMATH Qi HT, Xu MY (2007) Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model. Acta Mech Sin 23:463–469MathSciNetCrossRefMATH
59.
Zurück zum Zitat Qian D, Li CP, Agarwal RP, Wong PJY (2010) Stability analysis of fractional differential system with Riemann-Liouville derivative. Math Comput Model 52:862–874MathSciNetCrossRefMATH Qian D, Li CP, Agarwal RP, Wong PJY (2010) Stability analysis of fractional differential system with Riemann-Liouville derivative. Math Comput Model 52:862–874MathSciNetCrossRefMATH
60.
Zurück zum Zitat Quarteroni A, Valli A (1997) Numerical approximation of partial differential equations. Springer, New YorkMATH Quarteroni A, Valli A (1997) Numerical approximation of partial differential equations. Springer, New YorkMATH
61.
Zurück zum Zitat Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59:1326–1336MathSciNetCrossRefMATH Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59:1326–1336MathSciNetCrossRefMATH
62.
Zurück zum Zitat Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Math Appl 62:1135–1142MathSciNetCrossRefMATH Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Math Appl 62:1135–1142MathSciNetCrossRefMATH
63.
Zurück zum Zitat Salim TO (2008) Solution of fractional order Rayleigh-Stokes equations. Adv Theor Appl Mech 1:241–254MATH Salim TO (2008) Solution of fractional order Rayleigh-Stokes equations. Adv Theor Appl Mech 1:241–254MATH
64.
Zurück zum Zitat Shen F, Tan W, Zhao Y, Masuoka T (2006) The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal 7:1072–1080MathSciNetCrossRefMATH Shen F, Tan W, Zhao Y, Masuoka T (2006) The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal 7:1072–1080MathSciNetCrossRefMATH
65.
66.
Zurück zum Zitat Sun HG, Chen W, Li CP, Chen YQ (2010) Fractional differential models for anomalous diffusion. Phys A 389:2719–2724CrossRef Sun HG, Chen W, Li CP, Chen YQ (2010) Fractional differential models for anomalous diffusion. Phys A 389:2719–2724CrossRef
67.
Zurück zum Zitat Thome V (2006) Galerkin finite element methods for parabolic problems. Springer, Berlin Thome V (2006) Galerkin finite element methods for parabolic problems. Springer, Berlin
68.
Zurück zum Zitat Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213:205–213MathSciNetCrossRefMATH Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213:205–213MathSciNetCrossRefMATH
69.
Zurück zum Zitat Tong D, Liu Y (2005) Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Int J Eng Sci 43:281–289MathSciNetCrossRefMATH Tong D, Liu Y (2005) Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Int J Eng Sci 43:281–289MathSciNetCrossRefMATH
70.
Zurück zum Zitat Tong D, Wang R, Yang H (2005) Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci China Ser G Phys Mech Astron 48:485–495CrossRef Tong D, Wang R, Yang H (2005) Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci China Ser G Phys Mech Astron 48:485–495CrossRef
71.
Zurück zum Zitat Vieru D, Fetecau C, Fetecau C (2008) Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate. Appl Math Comput 201:834–842MathSciNetMATH Vieru D, Fetecau C, Fetecau C (2008) Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate. Appl Math Comput 201:834–842MathSciNetMATH
72.
Zurück zum Zitat Wang Y, Li CP (2007) Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle? Phys Lett A 363:414–419CrossRef Wang Y, Li CP (2007) Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle? Phys Lett A 363:414–419CrossRef
74.
Zurück zum Zitat Wu C (2009) Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Appl Numer Math 59:2571–2583MathSciNetCrossRefMATH Wu C (2009) Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Appl Numer Math 59:2571–2583MathSciNetCrossRefMATH
75.
76.
Zurück zum Zitat YingJun J, JingTang M (2013) Moving finite element methods for time fractional partial differential equations. Sci China Math 56:1287–1300MathSciNetCrossRefMATH YingJun J, JingTang M (2013) Moving finite element methods for time fractional partial differential equations. Sci China Math 56:1287–1300MathSciNetCrossRefMATH
77.
78.
Zurück zum Zitat Zayernouri M, Karniadakis GE (2015) Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys 293:312–338MathSciNetCrossRefMATH Zayernouri M, Karniadakis GE (2015) Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys 293:312–338MathSciNetCrossRefMATH
79.
Zurück zum Zitat Zayernouri M, Ainsworth M, Karniadakis GE (2015) A unified Petrov Galerkin spectral method for fractional PDEs. Comput Methods Appl Mech Eng 283:1545–1569MathSciNetCrossRef Zayernouri M, Ainsworth M, Karniadakis GE (2015) A unified Petrov Galerkin spectral method for fractional PDEs. Comput Methods Appl Mech Eng 283:1545–1569MathSciNetCrossRef
80.
Zurück zum Zitat Zayernouri M, Cao W, Zhang Z, Karniadakis GE (2014) Spectral and discontinuous spectral element methods for fractional delay equations. SIAM J Sci Comput 36:B904–B929MathSciNetCrossRefMATH Zayernouri M, Cao W, Zhang Z, Karniadakis GE (2014) Spectral and discontinuous spectral element methods for fractional delay equations. SIAM J Sci Comput 36:B904–B929MathSciNetCrossRefMATH
81.
Zurück zum Zitat Zayernouri M, Karniadakis GE (2014) Discontinuous spectral element methods for time-and space-fractional advection equations. SIAM J Sci Comput 36:B684–B707MathSciNetCrossRefMATH Zayernouri M, Karniadakis GE (2014) Discontinuous spectral element methods for time-and space-fractional advection equations. SIAM J Sci Comput 36:B684–B707MathSciNetCrossRefMATH
82.
Zurück zum Zitat Zhang N, Deng W, Wu Y (2012) Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv Appl Math Mech 4:496–518MathSciNetCrossRefMATH Zhang N, Deng W, Wu Y (2012) Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv Appl Math Mech 4:496–518MathSciNetCrossRefMATH
83.
Zurück zum Zitat Zhang H, Liu F, Anh V (2010) Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput 217:2534–2545MathSciNetMATH Zhang H, Liu F, Anh V (2010) Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput 217:2534–2545MathSciNetMATH
84.
Zurück zum Zitat Zhang X, Huang P, Feng X, Wei L (2012) Finite element method for two-dimensional time-fractional Tricomi-Type equations. Numer Methods Partial Differ Equations 29:1081–1096MathSciNetCrossRefMATH Zhang X, Huang P, Feng X, Wei L (2012) Finite element method for two-dimensional time-fractional Tricomi-Type equations. Numer Methods Partial Differ Equations 29:1081–1096MathSciNetCrossRefMATH
85.
Zurück zum Zitat Zhao C, Yang C (2009) Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Appl Math Comput 211:502–509MathSciNetMATH Zhao C, Yang C (2009) Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Appl Math Comput 211:502–509MathSciNetMATH
86.
Zurück zum Zitat Zhao Z, Li CP (2012) Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl Math Comput 219:2975–2988MathSciNetMATH Zhao Z, Li CP (2012) Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl Math Comput 219:2975–2988MathSciNetMATH
87.
Zurück zum Zitat Zhao Z, Li CP (2012) A numerical approach to the generalized nonlinear fractional Fokker-Planck equation. Comput Math Appl 64:3075–3089MathSciNetCrossRefMATH Zhao Z, Li CP (2012) A numerical approach to the generalized nonlinear fractional Fokker-Planck equation. Comput Math Appl 64:3075–3089MathSciNetCrossRefMATH
88.
Zurück zum Zitat Zheng Y, Li CP, Zhao Z (2010) A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation. Math Prob Eng 2010:26 (Article ID: 279038) Zheng Y, Li CP, Zhao Z (2010) A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation. Math Prob Eng 2010:26 (Article ID: 279038)
89.
Zurück zum Zitat Zeng F, Li CP, Liu F, Turner I (2013) The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J Sci Comput 35(6):A2976–A3000CrossRefMATH Zeng F, Li CP, Liu F, Turner I (2013) The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J Sci Comput 35(6):A2976–A3000CrossRefMATH
90.
Zurück zum Zitat Zheng Y, Li CP, Zhao ZG (2010) A note on the finite element method for the space-fractional advection diffusion equation. Comput Math Appl 59:1718–1726MathSciNetCrossRefMATH Zheng Y, Li CP, Zhao ZG (2010) A note on the finite element method for the space-fractional advection diffusion equation. Comput Math Appl 59:1718–1726MathSciNetCrossRefMATH
91.
Zurück zum Zitat Zheng M, Liu F, Anh V, Turner I (2016) A high-order spectral method for the multi-term time-fractional diffusion equations. Appl Math Model 40:4970–4985MathSciNetCrossRef Zheng M, Liu F, Anh V, Turner I (2016) A high-order spectral method for the multi-term time-fractional diffusion equations. Appl Math Model 40:4970–4985MathSciNetCrossRef
92.
Zurück zum Zitat Zhuang PH, Liu QX (2009) Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative. Appl Math Mech 30:1533–1546MathSciNetCrossRefMATH Zhuang PH, Liu QX (2009) Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative. Appl Math Mech 30:1533–1546MathSciNetCrossRefMATH
93.
Zurück zum Zitat Zhuang P, Liu F, Anh V, Turner I (2008) New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J Numer Anal 46:1079–1095MathSciNetCrossRefMATH Zhuang P, Liu F, Anh V, Turner I (2008) New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J Numer Anal 46:1079–1095MathSciNetCrossRefMATH
Metadaten
Titel
A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives
verfasst von
Mehdi Dehghan
Mostafa Abbaszadeh
Publikationsdatum
11.10.2016
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2017
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-016-0491-9

Weitere Artikel der Ausgabe 3/2017

Engineering with Computers 3/2017 Zur Ausgabe

Neuer Inhalt