Skip to main content
Erschienen in: Archive of Applied Mechanics 5/2021

24.01.2021 | Original

A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels

verfasst von: Muhammad Hamid, Muhammad Usman, Rizwan Ul Haq, Zhenfu Tian

Erschienen in: Archive of Applied Mechanics | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we numerically analyzed the MHD flow of a nanofluid in converging/diverging channels through the Galerkin approach. The walls are assumed to be stretchable. The governing equations of flow are reduced to nonlinear ODE system by using the appropriate nondimensionalized technique. The results are simulated numerically by means of Galerkin method. A detailed evaluation of outcomes obtained by Galerkin scheme with the fourth-order Runge–Kutta technique (RK-4) is available to support our numerical results. The significant effects of the various physical parameters are presented graphically. Prandtl numbers cause an increase in the temperature profile, while they cause a decrease in the concentration profile. The shrinking decreases the fluid velocity nearby the channel walls, while the stretching of diverging channel provides an enhancement in flow nearby the channel walls. An identical behavior is found for the convergent channel. The influence of Grashof numbers is negligible but effect of opposing flow forces is a little dominant than assisting flow forces. The comparative study with existing literature and RK-4 as well as convergence analysis indicates that the proposed method is an efficient mathematical tool to analyze the problems arising in mechanics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jeffery, G.B.L.: The two-dimensional steady motion of a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 29(172), 455–465 (1915)CrossRef Jeffery, G.B.L.: The two-dimensional steady motion of a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 29(172), 455–465 (1915)CrossRef
2.
Zurück zum Zitat Hamel, G.: Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresber Dtsch Math Ver 25, 34–60 (1916)MATH Hamel, G.: Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresber Dtsch Math Ver 25, 34–60 (1916)MATH
3.
Zurück zum Zitat Turkyilmazoglu, M.: Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)MathSciNetCrossRef Turkyilmazoglu, M.: Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput. Fluids 100, 196–203 (2014)MathSciNetCrossRef
4.
Zurück zum Zitat Mohyud-Din, S.T., Khan, U., Ahmed, N., Hassan, S.M.: Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl. Sci. 5(4), 1639–1664 (2015)CrossRef Mohyud-Din, S.T., Khan, U., Ahmed, N., Hassan, S.M.: Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl. Sci. 5(4), 1639–1664 (2015)CrossRef
5.
Zurück zum Zitat Mohyud-Din, S.T., Khan, U., Ahmed, N., Bin-Mohsin, B.: Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. 28(12), 4079–4092 (2017)CrossRef Mohyud-Din, S.T., Khan, U., Ahmed, N., Bin-Mohsin, B.: Heat and mass transfer analysis for MHD flow of nanofluid in convergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Appl. 28(12), 4079–4092 (2017)CrossRef
6.
Zurück zum Zitat Usman, M., Haq, R.U., Hamid, M., Wang, W.: Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J. Mol. Liq. 249, 856–867 (2018)CrossRef Usman, M., Haq, R.U., Hamid, M., Wang, W.: Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J. Mol. Liq. 249, 856–867 (2018)CrossRef
7.
Zurück zum Zitat Duong, X.Q., Cao, N.V., Hong, S.W., Ahn, S.H., Chung, J.D.: Numerical study on the combined heat and mass recovery adsorption cooling cycle. Energy Technol. 6(2), 296–305 (2018)CrossRef Duong, X.Q., Cao, N.V., Hong, S.W., Ahn, S.H., Chung, J.D.: Numerical study on the combined heat and mass recovery adsorption cooling cycle. Energy Technol. 6(2), 296–305 (2018)CrossRef
8.
Zurück zum Zitat Usman, M., Zubair, T., Hamid, M., Haq, R.U., Wang, W.: Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Phys. Fluids 30(2), 023104 (2018)CrossRef Usman, M., Zubair, T., Hamid, M., Haq, R.U., Wang, W.: Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Phys. Fluids 30(2), 023104 (2018)CrossRef
9.
Zurück zum Zitat Usman, M., Soomro, F.A., Haq, R.U., Wang, W.: Effects of velocity and thermal slip on Casson nanofluid flow, heat and mass transfer over permeable inclined stretching cylinder. Int. J. Heat Mass Transf. 122, 1255–1263 (2018)CrossRef Usman, M., Soomro, F.A., Haq, R.U., Wang, W.: Effects of velocity and thermal slip on Casson nanofluid flow, heat and mass transfer over permeable inclined stretching cylinder. Int. J. Heat Mass Transf. 122, 1255–1263 (2018)CrossRef
10.
Zurück zum Zitat Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 231, pp. 99–105. WHO, New York (1995) Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED, vol. 231, pp. 99–105. WHO, New York (1995)
11.
Zurück zum Zitat Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001)CrossRef Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79, 2252–2254 (2001)CrossRef
12.
Zurück zum Zitat Usman, M., Hamid, M., Khan, U., Mohyud-Din, S.T., Iqbal, M.A., Wang, W.: Differential transform method for unsteady nanofluid flow and heat transfer. Alex. Eng. J. 57, 1867–1875 (2018)CrossRef Usman, M., Hamid, M., Khan, U., Mohyud-Din, S.T., Iqbal, M.A., Wang, W.: Differential transform method for unsteady nanofluid flow and heat transfer. Alex. Eng. J. 57, 1867–1875 (2018)CrossRef
13.
Zurück zum Zitat Mohyud-Din, S.T., Usman, M., Afaq, K., Hamid, M., Wang, W.: Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Eng. Comput. 34(7), 2330–2343 (2017)CrossRef Mohyud-Din, S.T., Usman, M., Afaq, K., Hamid, M., Wang, W.: Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection. Eng. Comput. 34(7), 2330–2343 (2017)CrossRef
14.
Zurück zum Zitat Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)CrossRef Sheikholeslami, M., Sadoughi, M.K.: Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)CrossRef
15.
Zurück zum Zitat Usman, M., Hamid, M., Mohyud-Din, S.T., Waheed, A., Wang, W.: Exploration of Uniform Heat Flux on the Flow and Heat Transportation of Ferrofluids along a Smooth Plate: Comparative Investigation. Int. J. Biomath. 11(2), 1850048 (2018)MathSciNetCrossRef Usman, M., Hamid, M., Mohyud-Din, S.T., Waheed, A., Wang, W.: Exploration of Uniform Heat Flux on the Flow and Heat Transportation of Ferrofluids along a Smooth Plate: Comparative Investigation. Int. J. Biomath. 11(2), 1850048 (2018)MathSciNetCrossRef
16.
Zurück zum Zitat Crane, L.J.: Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21(4), 645–647 (1970)CrossRef Crane, L.J.: Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21(4), 645–647 (1970)CrossRef
17.
Zurück zum Zitat Nadeem, S., Haq, R.U.: Effect of thermal radiation for magnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J. Comput. Theor. Nanosci. 11(1), 32–40 (2014)CrossRef Nadeem, S., Haq, R.U.: Effect of thermal radiation for magnetohydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J. Comput. Theor. Nanosci. 11(1), 32–40 (2014)CrossRef
18.
Zurück zum Zitat Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci. 111, 274–288 (2017)CrossRef Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci. 111, 274–288 (2017)CrossRef
19.
Zurück zum Zitat Hamid, M., Usman, M., Zubair, T., Haq, R.U., Wang, W.: Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Transf. 124, 706–714 (2018)CrossRef Hamid, M., Usman, M., Zubair, T., Haq, R.U., Wang, W.: Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Transf. 124, 706–714 (2018)CrossRef
20.
Zurück zum Zitat Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)CrossRef Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)CrossRef
21.
Zurück zum Zitat Noor, N.F., Haq, R.U., Nadeem, S., Hashim, I.: Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8), 2007–2022 (2015)MathSciNetCrossRef Noor, N.F., Haq, R.U., Nadeem, S., Hashim, I.: Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8), 2007–2022 (2015)MathSciNetCrossRef
22.
Zurück zum Zitat Haq, R.U., Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14(1), 42–50 (2015)CrossRef Haq, R.U., Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14(1), 42–50 (2015)CrossRef
26.
Zurück zum Zitat El-Dabe, N.T., Abou-Zeid, M.Y., Mohamed, M.A.: ABD-Elmoneim MM: MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Arch. Appl. Mech. 13, 1–1 (2020) El-Dabe, N.T., Abou-Zeid, M.Y., Mohamed, M.A.: ABD-Elmoneim MM: MHD peristaltic flow of non-Newtonian power-law nanofluid through a non-Darcy porous medium inside a non-uniform inclined channel. Arch. Appl. Mech. 13, 1–1 (2020)
27.
28.
Zurück zum Zitat Abbaszadeh, M., Dehghan, M.: Investigation of the Oldroyd model as a generalized incompressible Navier–Stokes equation via the interpolating stabilized element free Galerkin technique. Appl. Numer. Math. 150, 274–294 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M.: Investigation of the Oldroyd model as a generalized incompressible Navier–Stokes equation via the interpolating stabilized element free Galerkin technique. Appl. Numer. Math. 150, 274–294 (2020)MathSciNetCrossRef
29.
Zurück zum Zitat Abbaszadeh, M., Dehghan, M., Khodadadian, A., Heitzinger, C.: Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher–Kolmogorov equation. Comput. Math. Appl. 80, 247–262 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M., Khodadadian, A., Heitzinger, C.: Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher–Kolmogorov equation. Comput. Math. Appl. 80, 247–262 (2020)MathSciNetCrossRef
30.
Zurück zum Zitat Usman, M., Hamid, M., Haq, R.U., Wang, W.: Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. Int. J. Heat Mass Transf. 123, 888–895 (2018)CrossRef Usman, M., Hamid, M., Haq, R.U., Wang, W.: Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. Int. J. Heat Mass Transf. 123, 888–895 (2018)CrossRef
31.
Zurück zum Zitat Abbaszadeh, M., Dehghan, M.: Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation. Appl. Numer. Math. 154, 172–186 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M.: Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation. Appl. Numer. Math. 154, 172–186 (2020)MathSciNetCrossRef
32.
Zurück zum Zitat Khan, Z.H., Usman, M., Zubair, T., Hamid, M., Haq, R.U.: Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: a Galerkin approach. Commun. Theor. Phys. 72, 115703 (2020)MathSciNetCrossRef Khan, Z.H., Usman, M., Zubair, T., Hamid, M., Haq, R.U.: Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: a Galerkin approach. Commun. Theor. Phys. 72, 115703 (2020)MathSciNetCrossRef
34.
Zurück zum Zitat Abbaszadeh, M., Dehghan, M.: Direct meshless local Petrov–Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng. Anal. Bound. Elem. 118, 188–201 (2020)MathSciNetCrossRef Abbaszadeh, M., Dehghan, M.: Direct meshless local Petrov–Galerkin method to investigate anisotropic potential and plane elastostatic equations of anisotropic functionally graded materials problems. Eng. Anal. Bound. Elem. 118, 188–201 (2020)MathSciNetCrossRef
Metadaten
Titel
A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels
verfasst von
Muhammad Hamid
Muhammad Usman
Rizwan Ul Haq
Zhenfu Tian
Publikationsdatum
24.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 5/2021
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01861-6

Weitere Artikel der Ausgabe 5/2021

Archive of Applied Mechanics 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.