Skip to main content
Erschienen in: Computational Mechanics 5/2016

01.05.2016 | Original Paper

A Galerkin-based formulation of the probability density evolution method for general stochastic finite element systems

verfasst von: Vissarion Papadopoulos, Ioannis Kalogeris

Erschienen in: Computational Mechanics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present paper proposes a Galerkin finite element projection scheme for the solution of the partial differential equations (pde’s) involved in the probability density evolution method, for the linear and nonlinear static analysis of stochastic systems. According to the principle of preservation of probability, the probability density evolution of a stochastic system is expressed by its corresponding Fokker–Planck (FP) stochastic partial differential equation. Direct integration of the FP equation is feasible only for simple systems with a small number of degrees of freedom, due to analytical and/or numerical intractability. However, rewriting the FP equation conditioned to the random event description, a generalized density evolution equation (GDEE) can be obtained, which can be reduced to a one dimensional pde. Two Galerkin finite element method schemes are proposed for the numerical solution of the resulting pde’s, namely a time-marching discontinuous Galerkin scheme and the StreamlineUpwind/Petrov Galerkin (SUPG) scheme. In addition, a reformulation of the classical GDEE is proposed, which implements the principle of probability preservation in space instead of time, making this approach suitable for the stochastic analysis of finite element systems. The advantages of the FE Galerkin methods and in particular the SUPG over finite difference schemes, like the modified Lax–Wendroff, which is the most frequently used method for the solution of the GDEE, are illustrated with numerical examples and explored further.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277CrossRef Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277CrossRef
2.
Zurück zum Zitat Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259MathSciNetCrossRefMATH Brooks AN, Hughes TJ (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1–3):199–259MathSciNetCrossRefMATH
3.
Zurück zum Zitat Chen JB, Li J (2008) Strategy for selecting representative points via tangent spheres in the probability density evolution method. Int J Numer Methods Eng 74(13):1988–2014MathSciNetCrossRefMATH Chen JB, Li J (2008) Strategy for selecting representative points via tangent spheres in the probability density evolution method. Int J Numer Methods Eng 74(13):1988–2014MathSciNetCrossRefMATH
4.
Zurück zum Zitat Chen JB, Li J (2009) A note on the principle of preservation of probability and probability density evolution equation. Probab Eng Mech 24(1):51–59CrossRef Chen JB, Li J (2009) A note on the principle of preservation of probability and probability density evolution equation. Probab Eng Mech 24(1):51–59CrossRef
5.
6.
Zurück zum Zitat Chen JB, Ghanem R, Li J (2009) Partition of the probability-assigned space in probability density evolution analysis of nonlinear stochastic structures. Probab Eng Mech 24(1):27–42CrossRef Chen JB, Ghanem R, Li J (2009) Partition of the probability-assigned space in probability density evolution analysis of nonlinear stochastic structures. Probab Eng Mech 24(1):27–42CrossRef
7.
Zurück zum Zitat Cho H, Venturi D, Karniadakis G (2013) Adaptive discontinuous galerkin method for response-excitation pdf equations. SIAM J Sci Comput 35(4):B890–B911MathSciNetCrossRefMATH Cho H, Venturi D, Karniadakis G (2013) Adaptive discontinuous galerkin method for response-excitation pdf equations. SIAM J Sci Comput 35(4):B890–B911MathSciNetCrossRefMATH
8.
Zurück zum Zitat Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35(6):2440–2463MathSciNetCrossRefMATH Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35(6):2440–2463MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cockburn B, Shu CW (2001) Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16(3):173–261MathSciNetCrossRefMATH Cockburn B, Shu CW (2001) Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16(3):173–261MathSciNetCrossRefMATH
10.
Zurück zum Zitat Cockburn B, Lin SY, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J Comput Phys 84(1):90–113MathSciNetCrossRefMATH Cockburn B, Lin SY, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J Comput Phys 84(1):90–113MathSciNetCrossRefMATH
11.
Zurück zum Zitat Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74MathSciNetCrossRefMATH Courant R, Friedrichs K, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74MathSciNetCrossRefMATH
12.
Zurück zum Zitat de Vahl Davis G, Mallinson G (1976) An evaluation of upwind and central difference approximations by a study of recirculating flow. Comput Fluids 4(1):29–43CrossRefMATH de Vahl Davis G, Mallinson G (1976) An evaluation of upwind and central difference approximations by a study of recirculating flow. Comput Fluids 4(1):29–43CrossRefMATH
13.
Zurück zum Zitat Elman HC, Silvester DJ (2005) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, OxfordMATH Elman HC, Silvester DJ (2005) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, OxfordMATH
14.
Zurück zum Zitat Ghanem R, Spanos P (1990) Polynomial chaos in stochastic finite elements. J Appl Mech Trans ASME 57(1):197–202CrossRefMATH Ghanem R, Spanos P (1990) Polynomial chaos in stochastic finite elements. J Appl Mech Trans ASME 57(1):197–202CrossRefMATH
15.
Zurück zum Zitat Hesthaven JS, Warburton T (2007) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, 1st edn. Springer Publishing Company, IncorporatedMATH Hesthaven JS, Warburton T (2007) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, 1st edn. Springer Publishing Company, IncorporatedMATH
16.
Zurück zum Zitat Houston P, Schwab C, Süli E (2000) Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J Numer Anal 37(5):1618–1643MathSciNetCrossRefMATH Houston P, Schwab C, Süli E (2000) Stabilized hp-finite element methods for first-order hyperbolic problems. SIAM J Numer Anal 37(5):1618–1643MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hughes TJ, Mallet M, Akira M (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355MathSciNetCrossRefMATH Hughes TJ, Mallet M, Akira M (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355MathSciNetCrossRefMATH
18.
Zurück zum Zitat Kleiber M, Hien TD (1992) The stochastic finite element method (basic perturbation technique and computer implementation). Wiley, ChichesterMATH Kleiber M, Hien TD (1992) The stochastic finite element method (basic perturbation technique and computer implementation). Wiley, ChichesterMATH
19.
Zurück zum Zitat Kougioumtzoglou I, Spanos P (2012) An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillators. Probab Eng Mech 28:125–131CrossRef Kougioumtzoglou I, Spanos P (2012) An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillators. Probab Eng Mech 28:125–131CrossRef
20.
Zurück zum Zitat Kougioumtzoglou I, Spanos P (2014) Nonstationary stochastic response determination of nonlinear systems: a Wiener path integral formalism. J Eng Mech 140(9):04014064CrossRef Kougioumtzoglou I, Spanos P (2014) Nonstationary stochastic response determination of nonlinear systems: a Wiener path integral formalism. J Eng Mech 140(9):04014064CrossRef
21.
Zurück zum Zitat Koutsourelakis P, Pradlwarter H, Schuëller G (2004) Reliability of structures in high dimensions, part I: algorithms and applications. Probab Eng Mech 19(4):409–417CrossRef Koutsourelakis P, Pradlwarter H, Schuëller G (2004) Reliability of structures in high dimensions, part I: algorithms and applications. Probab Eng Mech 19(4):409–417CrossRef
22.
Zurück zum Zitat LeVeque RJ (1992) Numerical methods for conservation laws, 2nd edn. Birkhäuser, BostonCrossRefMATH LeVeque RJ (1992) Numerical methods for conservation laws, 2nd edn. Birkhäuser, BostonCrossRefMATH
23.
Zurück zum Zitat LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge
24.
Zurück zum Zitat Li J, Chen JB (2004) Probability density evolution method for dynamic response analysis of structures with uncertain parameters. Comput Mech 34(5):400–409CrossRefMATH Li J, Chen JB (2004) Probability density evolution method for dynamic response analysis of structures with uncertain parameters. Comput Mech 34(5):400–409CrossRefMATH
25.
Zurück zum Zitat Li J, Chen JB (2007) The number theoretical method in response analysis of nonlinear stochastic structures. Comput Mech 39(6):693–708MathSciNetCrossRefMATH Li J, Chen JB (2007) The number theoretical method in response analysis of nonlinear stochastic structures. Comput Mech 39(6):693–708MathSciNetCrossRefMATH
26.
Zurück zum Zitat Li J, Chen JB (2008) The principle of preservation of probability and the generalized density evolution equation. Struct Saf 30(1):65–77CrossRef Li J, Chen JB (2008) The principle of preservation of probability and the generalized density evolution equation. Struct Saf 30(1):65–77CrossRef
27.
Zurück zum Zitat Papadopoulos V, Iglesis P (2007) The effect of non-uniformity of axial loading on the buckling behaviour of shells with random imperfections. Int J Solids Struct 44(18–19):6299–6317CrossRefMATH Papadopoulos V, Iglesis P (2007) The effect of non-uniformity of axial loading on the buckling behaviour of shells with random imperfections. Int J Solids Struct 44(18–19):6299–6317CrossRefMATH
28.
Zurück zum Zitat Papadrakakis M, Kotsopoulos A (1999) Parallel solutions methods for stochastic fea using Monte Carlo simulation. Comput Methods Appl Mech Eng 168:305–320CrossRef Papadrakakis M, Kotsopoulos A (1999) Parallel solutions methods for stochastic fea using Monte Carlo simulation. Comput Methods Appl Mech Eng 168:305–320CrossRef
29.
Zurück zum Zitat Papadrakakis M, Papadopoulos V (1996) Robust and efficient solution techniques for the stochastic finite element analysis of space frames. Comput Methods Appl Mech Eng 134:627–658MathSciNetCrossRef Papadrakakis M, Papadopoulos V (1996) Robust and efficient solution techniques for the stochastic finite element analysis of space frames. Comput Methods Appl Mech Eng 134:627–658MathSciNetCrossRef
30.
Zurück zum Zitat Qiu J, Khoo BC, Shu CW (2006) A numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. J Comput Phys 212(2):540–565MathSciNetCrossRefMATH Qiu J, Khoo BC, Shu CW (2006) A numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. J Comput Phys 212(2):540–565MathSciNetCrossRefMATH
31.
Zurück zum Zitat Raithby G (1976) A critical evaluation of upstream differencing applied to problems involving fluid flow. Comput Methods Appl Mech Eng 9(1):75–103MathSciNetCrossRefMATH Raithby G (1976) A critical evaluation of upstream differencing applied to problems involving fluid flow. Comput Methods Appl Mech Eng 9(1):75–103MathSciNetCrossRefMATH
32.
Zurück zum Zitat Reed W, Hill T (1973) Triangular mesh methods for the neutron transport equation. Tech Report. LA-UR-73-479, Los Alamos Scientific Laboratory Reed W, Hill T (1973) Triangular mesh methods for the neutron transport equation. Tech Report. LA-UR-73-479, Los Alamos Scientific Laboratory
34.
Zurück zum Zitat Schenk C, Schuëller G (2003) Buckling analysis of cylindrical shells with random geometric imperfections. Int J Non-Linear Mech 38(7):1119–1132CrossRefMATH Schenk C, Schuëller G (2003) Buckling analysis of cylindrical shells with random geometric imperfections. Int J Non-Linear Mech 38(7):1119–1132CrossRefMATH
35.
Zurück zum Zitat Schneider-Bürger M (2003) Stahlbau-Profile. Stahleisen-Verlag, Dusseldorf Schneider-Bürger M (2003) Stahlbau-Profile. Stahleisen-Verlag, Dusseldorf
36.
Zurück zum Zitat Schuëller G (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773CrossRefMATH Schuëller G (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75(10–12):755–773CrossRefMATH
37.
Zurück zum Zitat Shinozuka M, Jan CM (1972) Digital simulation of random processes and its applications. J Sound Vib 25(1):111–128CrossRef Shinozuka M, Jan CM (1972) Digital simulation of random processes and its applications. J Sound Vib 25(1):111–128CrossRef
38.
Zurück zum Zitat Stavroulakis G, Giovanis DG, Papadrakakis M, Papadopoulos V (2014) A new perspective on the solution of uncertainty quantification and reliability analysis of large-scale problems. Comput Methods Appl Mech Eng 276:627–658MathSciNetCrossRef Stavroulakis G, Giovanis DG, Papadrakakis M, Papadopoulos V (2014) A new perspective on the solution of uncertainty quantification and reliability analysis of large-scale problems. Comput Methods Appl Mech Eng 276:627–658MathSciNetCrossRef
39.
Zurück zum Zitat Venturi D, Karniadakis G (2012) New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear pdes. J Comput Phys 231(21):7450–7474MathSciNetCrossRefMATH Venturi D, Karniadakis G (2012) New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear pdes. J Comput Phys 231(21):7450–7474MathSciNetCrossRefMATH
40.
Zurück zum Zitat Venturi D, Tartakovsky D, Tartakovsky A, Karniadakis G (2013) Exact pdf equations and closure approximations for advective-reactive transport. J Comput Phys 243:323–343MathSciNetCrossRef Venturi D, Tartakovsky D, Tartakovsky A, Karniadakis G (2013) Exact pdf equations and closure approximations for advective-reactive transport. J Comput Phys 243:323–343MathSciNetCrossRef
41.
42.
Zurück zum Zitat Xu J, Chen JB, Li J (2012) Probability density evolution analysis of engineering structures via cubature points. Comput Mech 50(1):135–156MathSciNetCrossRefMATH Xu J, Chen JB, Li J (2012) Probability density evolution analysis of engineering structures via cubature points. Comput Mech 50(1):135–156MathSciNetCrossRefMATH
Metadaten
Titel
A Galerkin-based formulation of the probability density evolution method for general stochastic finite element systems
verfasst von
Vissarion Papadopoulos
Ioannis Kalogeris
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1256-9

Weitere Artikel der Ausgabe 5/2016

Computational Mechanics 5/2016 Zur Ausgabe

Neuer Inhalt