Skip to main content
Erschienen in: Computational Mechanics 5/2016

01.05.2016 | Original Paper

Numerical treatment of a geometrically nonlinear planar Cosserat shell model

verfasst von: Oliver Sander, Patrizio Neff, Mircea Bîrsan

Erschienen in: Computational Mechanics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton’s method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Here we deliberately differ from [54], where a point load is used.
 
2
Note that this radius bounds both corrections to m and to \(\overline{R},\) so it cannot be assigned a unit.
 
3
In [40] it was proposed to use a Riemannian trust-region method instead of the simpler Newton method. Such a choice guarantees convergence of the solver. However, in practice we never observed convergence issues even for the simpler Newton method.
 
Literatur
1.
Zurück zum Zitat Absil P-A, Mahony R, Sepulchre R (2008) Optimization algorithms on matrix manifolds. Princeton University Press, PrincetonCrossRefMATH Absil P-A, Mahony R, Sepulchre R (2008) Optimization algorithms on matrix manifolds. Princeton University Press, PrincetonCrossRefMATH
2.
Zurück zum Zitat Absil P-A, Mahony R, Trumpf J (2013) An extrinsic look at the Riemannian Hessian. In: Geometric science of information, lecture notes in computer science, vol 8085. Springer, Berlin, pp 361–368 Absil P-A, Mahony R, Trumpf J (2013) An extrinsic look at the Riemannian Hessian. In: Geometric science of information, lecture notes in computer science, vol 8085. Springer, Berlin, pp 361–368
3.
Zurück zum Zitat Argyris JH, Balmer H, Doltsinis JH, Dunne PC, Haase M, Kleiber M, Malejannakis GA, Mlejnek JP, Müller M, Scharpf DW (1979) Finite element method—the natural approach. Comput Methods Appl Mech Eng 17(18):1–106CrossRefMATH Argyris JH, Balmer H, Doltsinis JH, Dunne PC, Haase M, Kleiber M, Malejannakis GA, Mlejnek JP, Müller M, Scharpf DW (1979) Finite element method—the natural approach. Comput Methods Appl Mech Eng 17(18):1–106CrossRefMATH
4.
Zurück zum Zitat Bartels S, Prohl A (2007) Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math Comput 76(260):1847–1859MathSciNetCrossRefMATH Bartels S, Prohl A (2007) Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math Comput 76(260):1847–1859MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber R, Ohlberger M, Sander O (2008) A generic grid interface for adaptive and parallel scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3):121–138MathSciNetCrossRefMATH Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Kornhuber R, Ohlberger M, Sander O (2008) A generic grid interface for adaptive and parallel scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3):121–138MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bîrsan M, Neff P (2012) On the equations of geometrically nonlinear elastic plates with rotational degrees of freedom. Ann Acad Rom Sci Ser Math Appl 4:97–103MathSciNetMATH Bîrsan M, Neff P (2012) On the equations of geometrically nonlinear elastic plates with rotational degrees of freedom. Ann Acad Rom Sci Ser Math Appl 4:97–103MathSciNetMATH
7.
Zurück zum Zitat Bîrsan M, Neff P (2013) Existence theorems in the geometrically non-linear 6-parameter theory of elastic plates. J Elast 112:185–198MathSciNetCrossRefMATH Bîrsan M, Neff P (2013) Existence theorems in the geometrically non-linear 6-parameter theory of elastic plates. J Elast 112:185–198MathSciNetCrossRefMATH
8.
Zurück zum Zitat Bîrsan M, Neff P (2014a) On the characterization of drilling rotation in the 6-parameter resultant shell theory. In: Pietraszkiewiecz W, Górski J (eds) Shell structures: theory and applications, vol 3. CRC Press/Balkema, Taylor and Francis Group, London, pp 61–64 Bîrsan M, Neff P (2014a) On the characterization of drilling rotation in the 6-parameter resultant shell theory. In: Pietraszkiewiecz W, Górski J (eds) Shell structures: theory and applications, vol 3. CRC Press/Balkema, Taylor and Francis Group, London, pp 61–64
9.
Zurück zum Zitat Bîrsan M, Neff P (2014) Shells without drilling rotations: a representation theorem in the framework of the geometrically nonlinear 6-parameter resultant shell theory. Int J Eng Sci 80:32–42MathSciNetCrossRefMATH Bîrsan M, Neff P (2014) Shells without drilling rotations: a representation theorem in the framework of the geometrically nonlinear 6-parameter resultant shell theory. Int J Eng Sci 80:32–42MathSciNetCrossRefMATH
10.
Zurück zum Zitat Bîrsan M, Neff P (2014) Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations. Math Mech Solids 19(4):376–397MathSciNetCrossRefMATH Bîrsan M, Neff P (2014) Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations. Math Mech Solids 19(4):376–397MathSciNetCrossRefMATH
11.
Zurück zum Zitat Braess D (2013) Finite Elemente, 5th edn. Springer, Berlin Braess D (2013) Finite Elemente, 5th edn. Springer, Berlin
12.
Zurück zum Zitat Chróścielewski J, Makowski J, Pietraszkiewicz W (2004) Statics and dynamics of multifold shells: nonlinear theory and finite element method. Wydawnictwo IPPT PAN, Warsaw (in Polish) Chróścielewski J, Makowski J, Pietraszkiewicz W (2004) Statics and dynamics of multifold shells: nonlinear theory and finite element method. Wydawnictwo IPPT PAN, Warsaw (in Polish)
14.
Zurück zum Zitat Crisfield M, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc Lond A 455:1125–1147MathSciNetCrossRefMATH Crisfield M, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc Lond A 455:1125–1147MathSciNetCrossRefMATH
15.
Zurück zum Zitat Dornisch W, Klinkel S (2014) Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework. Comput Methods Appl Mech Eng 276:35–66MathSciNetCrossRef Dornisch W, Klinkel S (2014) Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework. Comput Methods Appl Mech Eng 276:35–66MathSciNetCrossRef
16.
Zurück zum Zitat Dornisch W, Klinkel S, Simeon B (2013) Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors. Comput Methods Appl Mech Eng 253:491–504MathSciNetCrossRefMATH Dornisch W, Klinkel S, Simeon B (2013) Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors. Comput Methods Appl Mech Eng 253:491–504MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ebbing V, Balzani D, Schröder J, Neff P, Gruttmann F (2009) Construction of anisotropic polyconvex energies and applications to thin shells. Comput Mater Sci 46:639–641CrossRef Ebbing V, Balzani D, Schröder J, Neff P, Gruttmann F (2009) Construction of anisotropic polyconvex energies and applications to thin shells. Comput Mater Sci 46:639–641CrossRef
18.
19.
Zurück zum Zitat Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation, 2nd edn. SIAM, PhiladelphiaCrossRefMATH Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation, 2nd edn. SIAM, PhiladelphiaCrossRefMATH
21.
Zurück zum Zitat Groisser D (2004) Newton’s method, zeroes of vector fields, and the Riemannian center of mass. Adv Appl Math 33(1):95–135MathSciNetCrossRefMATH Groisser D (2004) Newton’s method, zeroes of vector fields, and the Riemannian center of mass. Adv Appl Math 33(1):95–135MathSciNetCrossRefMATH
22.
Zurück zum Zitat Gruttmann F, Wagner W, Meyer L, Wriggers P (1993) A nonlinear composite shell element with continuous interlaminar shear stresses. Comput Mech 13:175–188CrossRefMATH Gruttmann F, Wagner W, Meyer L, Wriggers P (1993) A nonlinear composite shell element with continuous interlaminar shear stresses. Comput Mech 13:175–188CrossRefMATH
23.
Zurück zum Zitat Hakula H, Leino Y, Pitkäranta J (1996) Scale resolution, locking, and high-order finite element modelling of shells. Comput Methods Appl Mech Eng 133(3–4):157–182CrossRefMATH Hakula H, Leino Y, Pitkäranta J (1996) Scale resolution, locking, and high-order finite element modelling of shells. Comput Methods Appl Mech Eng 133(3–4):157–182CrossRefMATH
25.
Zurück zum Zitat Kendall WS (1990) Probability, convexity, and harmonic maps with small image. I: uniqueness and fine existence. Proc Lond Math Soc s3–61(2):371–406MathSciNetCrossRefMATH Kendall WS (1990) Probability, convexity, and harmonic maps with small image. I: uniqueness and fine existence. Proc Lond Math Soc s3–61(2):371–406MathSciNetCrossRefMATH
26.
Zurück zum Zitat Kornhuber R (1997) Adaptive monotone multigrid methods for nonlinear variational problems. B.G. Teubner, StuttgartMATH Kornhuber R (1997) Adaptive monotone multigrid methods for nonlinear variational problems. B.G. Teubner, StuttgartMATH
27.
Zurück zum Zitat Libai A, Simmonds J (1998) The nonlinear theory of elastic shells, 2nd edn. Cambridge University Press, CambridgeCrossRefMATH Libai A, Simmonds J (1998) The nonlinear theory of elastic shells, 2nd edn. Cambridge University Press, CambridgeCrossRefMATH
28.
Zurück zum Zitat Müller W (2009) Numerische Analyse und Parallele Simulation von nichtlinearen Cosserat-Modellen. PhD Thesis, Karlsruher Institut für Technologie Müller W (2009) Numerische Analyse und Parallele Simulation von nichtlinearen Cosserat-Modellen. PhD Thesis, Karlsruher Institut für Technologie
29.
Zurück zum Zitat Münch I (2007) Ein geometrisch und materiell nichtlineares Cosserat-Model — Theorie, Numerik und Anwendungsmöglichkeiten. PhD Thesis, Universität Karlsruhe Münch I (2007) Ein geometrisch und materiell nichtlineares Cosserat-Model — Theorie, Numerik und Anwendungsmöglichkeiten. PhD Thesis, Universität Karlsruhe
31.
Zurück zum Zitat Neff P (2004) A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit. Part I: formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin Mech Thermodyn 16:577–628MathSciNetCrossRefMATH Neff P (2004) A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit. Part I: formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin Mech Thermodyn 16:577–628MathSciNetCrossRefMATH
32.
Zurück zum Zitat Neff P (2005) A geometrically exact viscoplastic membrane-shell with viscoelastic transverse shear resistance avoiding degeneracy in the thin-shell limit. Part I: the viscoelastic membrane-plate. ZAMP 56(1):148–182MathSciNetCrossRefMATH Neff P (2005) A geometrically exact viscoplastic membrane-shell with viscoelastic transverse shear resistance avoiding degeneracy in the thin-shell limit. Part I: the viscoelastic membrane-plate. ZAMP 56(1):148–182MathSciNetCrossRefMATH
33.
Zurück zum Zitat Neff P (2006) The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z Angew Math Mech 86:892–912MathSciNetCrossRefMATH Neff P (2006) The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z Angew Math Mech 86:892–912MathSciNetCrossRefMATH
34.
Zurück zum Zitat Neff P (2007) A geometrically exact planar Cosserat shell-model with microstructure: existence of minimizers for zero Cosserat couple modulus. Math Models Methods Appl Sci 17:363–392MathSciNetCrossRefMATH Neff P (2007) A geometrically exact planar Cosserat shell-model with microstructure: existence of minimizers for zero Cosserat couple modulus. Math Models Methods Appl Sci 17:363–392MathSciNetCrossRefMATH
35.
Zurück zum Zitat Neff P, Fischle A, Münch I (2008) Symmetric Cauchy-stresses do not imply symmetric Biot-strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom. Acta Mech 197:19–30CrossRefMATH Neff P, Fischle A, Münch I (2008) Symmetric Cauchy-stresses do not imply symmetric Biot-strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom. Acta Mech 197:19–30CrossRefMATH
36.
Zurück zum Zitat Neff P, Hong K-I, Jeong J (2010) The Reissner–Mindlin plate is the \(\Gamma \)-limit of Cosserat elasticity. Math Models Methods Appl Sci 20:1553–1590MathSciNetCrossRefMATH Neff P, Hong K-I, Jeong J (2010) The Reissner–Mindlin plate is the \(\Gamma \)-limit of Cosserat elasticity. Math Models Methods Appl Sci 20:1553–1590MathSciNetCrossRefMATH
37.
Zurück zum Zitat Neff P, Ghiba I, Madeo A, Placidi L, Rosi G (2014a) The relaxed micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math Mech Solids. doi:10.1177/1081286513516972 Neff P, Ghiba I, Madeo A, Placidi L, Rosi G (2014a) The relaxed micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math Mech Solids. doi:10.​1177/​1081286513516972​
38.
Zurück zum Zitat Neff P, Ghiba I, Madeo A, Placidi L, Rosi G (2014b) A unifying perspective: the relaxed linear micromorphic continuum. Contin Mech Thermodyn 26:639–681MathSciNetCrossRefMATH Neff P, Ghiba I, Madeo A, Placidi L, Rosi G (2014b) A unifying perspective: the relaxed linear micromorphic continuum. Contin Mech Thermodyn 26:639–681MathSciNetCrossRefMATH
39.
Zurück zum Zitat Pompe W (2003) Korn’s first inequality with variable coefficients and its generalizations. Comment Math Univ Carol 44:57–70MathSciNetMATH Pompe W (2003) Korn’s first inequality with variable coefficients and its generalizations. Comment Math Univ Carol 44:57–70MathSciNetMATH
40.
42.
Zurück zum Zitat Schröder J, Neff P, Ebbing V (2008) Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J Mech Phys Solids 56(12):3486–3506 Schröder J, Neff P, Ebbing V (2008) Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J Mech Phys Solids 56(12):3486–3506
43.
Zurück zum Zitat Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304 Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304
44.
Zurück zum Zitat Simo J, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116CrossRefMATH Simo J, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116CrossRefMATH
45.
Zurück zum Zitat Simo J, Fox D, Rifai M (1990) On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79(1):21–70MathSciNetCrossRefMATH Simo J, Fox D, Rifai M (1990) On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79(1):21–70MathSciNetCrossRefMATH
46.
Zurück zum Zitat Steigmann DJ (2013) Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J Elast 111(1):91–107MathSciNetCrossRefMATH Steigmann DJ (2013) Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J Elast 111(1):91–107MathSciNetCrossRefMATH
47.
Zurück zum Zitat Taylor M, Bertoldi K, Steigmann DJ (2014) Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain. J Mech Phys Solids 62:163–180MathSciNetCrossRefMATH Taylor M, Bertoldi K, Steigmann DJ (2014) Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain. J Mech Phys Solids 62:163–180MathSciNetCrossRefMATH
48.
Zurück zum Zitat Walther A, Griewank A (2012) Getting started with ADOL-C. In: Naumann U, Schenk O (eds) Combinatorial scientific computing. Chapman-Hall CRC Computational Science, Boca Raton. pp 181–202 Walther A, Griewank A (2012) Getting started with ADOL-C. In: Naumann U, Schenk O (eds) Combinatorial scientific computing. Chapman-Hall CRC Computational Science, Boca Raton. pp 181–202
49.
Zurück zum Zitat Weinberg K, Neff P (2008) A geometrically exact thin membrane model—investigation of large deformations and wrinkling. Int J Numer Methods Eng 74(6):871–893MathSciNetCrossRefMATH Weinberg K, Neff P (2008) A geometrically exact thin membrane model—investigation of large deformations and wrinkling. Int J Numer Methods Eng 74(6):871–893MathSciNetCrossRefMATH
50.
Zurück zum Zitat Wiśniewski K (2010) Finite rotation shells. Basic equations and finite elements for Reissner kinematics. Springer, DordrechtMATH Wiśniewski K (2010) Finite rotation shells. Basic equations and finite elements for Reissner kinematics. Springer, DordrechtMATH
51.
Zurück zum Zitat (1974) Spaces of constant curvature, 3rd edn. Publish or Perish, Inc., Boston (1974) Spaces of constant curvature, 3rd edn. Publish or Perish, Inc., Boston
52.
Zurück zum Zitat Wong YW, Pellegrino S (2006a) Wrinkled membranes part I: experiments. J Mech Mater Struct 1(1):1–23CrossRef Wong YW, Pellegrino S (2006a) Wrinkled membranes part I: experiments. J Mech Mater Struct 1(1):1–23CrossRef
53.
Zurück zum Zitat Wong YW, Pellegrino S (2006b) Wrinkled membranes part III: numerical simulations. J Mech Mater Struct 1(1):63–95CrossRef Wong YW, Pellegrino S (2006b) Wrinkled membranes part III: numerical simulations. J Mech Mater Struct 1(1):63–95CrossRef
54.
Zurück zum Zitat Wriggers P, Gruttmann F (1993) Thin shells with finite rotations formulated in Biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36:2049–2071CrossRefMATH Wriggers P, Gruttmann F (1993) Thin shells with finite rotations formulated in Biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36:2049–2071CrossRefMATH
Metadaten
Titel
Numerical treatment of a geometrically nonlinear planar Cosserat shell model
verfasst von
Oliver Sander
Patrizio Neff
Mircea Bîrsan
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1263-5

Weitere Artikel der Ausgabe 5/2016

Computational Mechanics 5/2016 Zur Ausgabe

Neuer Inhalt