Skip to main content
Erschienen in: Computational Mechanics 5/2016

01.05.2016 | Original Paper

Stable and flux-conserved meshfree formulation to model shocks

verfasst von: Michael J. Roth, Jiun-Shyan Chen, Thomas R. Slawson, Kent T. Danielson

Erschienen in: Computational Mechanics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate shock modeling requires that two critical issues be addressed: (1) correct representation of the essential shock physics, and (2) control of Gibbs phenomenon oscillation at the discontinuity. In this work a stable (oscillation limiting) and flux-conserved formulation under the reproducing kernel particle method is developed for shock modeling. A smoothed flux divergence is constructed under the framework of stabilized conforming nodal integration, which is locally-enriched with a Riemann solution to satisfy the entropy production constraints. This Riemann-enriched flux divergence is embedded into the reproducing kernel formulation through a velocity correction that also provides oscillation control at the shock. The correction is constrained to the shock region by an automatic shock detection algorithm that is constructed using the intrinsic spectral decomposition feature of the reproducing kernel approximation. Several numerical examples are provided to verify accuracy of the proposed formulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Jeffrey A, Tanuiti T (1964) Mathematics in science and engineering. In: Bellman R (ed) Non-linear wave propagation: application to physics and magnetohydrodynamics. Academic Press, New York Jeffrey A, Tanuiti T (1964) Mathematics in science and engineering. In: Bellman R (ed) Non-linear wave propagation: application to physics and magnetohydrodynamics. Academic Press, New York
4.
Zurück zum Zitat Oleinik OA (1957) Discontinuous solutions of nonlinear differential equations. Uspeki Mat Nauk 12:3–73 (Am. Math. Soc. Translat. Ser. 2 26:95–172) Oleinik OA (1957) Discontinuous solutions of nonlinear differential equations. Uspeki Mat Nauk 12:3–73 (Am. Math. Soc. Translat. Ser. 2 26:95–172)
6.
Zurück zum Zitat Godunov SK (1959) Finite-difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Math Sbornik 47:271–306 (translated U.S. Joint Publ. Rel. Service, JPRS 7226) Godunov SK (1959) Finite-difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Math Sbornik 47:271–306 (translated U.S. Joint Publ. Rel. Service, JPRS 7226)
7.
Zurück zum Zitat Roe PL (1980) The use of the Riemann problem in finite-difference schemes. Lecture notes in physics, vol 141. Springer, New York, pp 354–359 Roe PL (1980) The use of the Riemann problem in finite-difference schemes. Lecture notes in physics, vol 141. Springer, New York, pp 354–359
9.
Zurück zum Zitat Harten A, Hyman JM (1983) Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J Comput Phys 50:235–269MathSciNetCrossRefMATH Harten A, Hyman JM (1983) Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J Comput Phys 50:235–269MathSciNetCrossRefMATH
10.
11.
Zurück zum Zitat van Leer B (1984) On the relation between the upwind difference schemes of Godunov. Engquist-Osher, and Roe. SIAM J Sci Stat Comput 5:1–20CrossRefMATH van Leer B (1984) On the relation between the upwind difference schemes of Godunov. Engquist-Osher, and Roe. SIAM J Sci Stat Comput 5:1–20CrossRefMATH
12.
13.
Zurück zum Zitat Landshoff R (1955) A numerical method for treating fluid flow in the presence of shocks. Los Alamos Scientific Laboratory Report LA-1930 Landshoff R (1955) A numerical method for treating fluid flow in the presence of shocks. Los Alamos Scientific Laboratory Report LA-1930
14.
15.
Zurück zum Zitat van Leer B (1974) Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order accurate scheme. J Comput Phys 14:361–370CrossRefMATH van Leer B (1974) Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order accurate scheme. J Comput Phys 14:361–370CrossRefMATH
16.
Zurück zum Zitat van Leer B (1979) Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov’s method. J Comput Phys 32:101–136CrossRef van Leer B (1979) Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov’s method. J Comput Phys 32:101–136CrossRef
17.
Zurück zum Zitat van Aldaba GD, van Leer B, Roberts WW (1982) A comparative study of computational methods in cosmic gas dynamics. Astron Astrophys 108:76–84MATH van Aldaba GD, van Leer B, Roberts WW (1982) A comparative study of computational methods in cosmic gas dynamics. Astron Astrophys 108:76–84MATH
19.
20.
Zurück zum Zitat Harten A, Enquist B, Osher S, Chakravarty SR (1997) Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys 131:3–47CrossRefMATH Harten A, Enquist B, Osher S, Chakravarty SR (1997) Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys 131:3–47CrossRefMATH
22.
Zurück zum Zitat Christie I, Griffiths DF, Mitchell AR, Zienkiewicz OC (1976) Finite element methods for second order differential equations with significant first derivatives. Int J Numer Methods Eng 10:1389–1396MathSciNetCrossRefMATH Christie I, Griffiths DF, Mitchell AR, Zienkiewicz OC (1976) Finite element methods for second order differential equations with significant first derivatives. Int J Numer Methods Eng 10:1389–1396MathSciNetCrossRefMATH
23.
Zurück zum Zitat Kelly DW, Nakazawa S, Zienkiewicz OC, Heinrich JC (1980) A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems. Int J Numer Methods Eng 15:1705–1711MathSciNetCrossRefMATH Kelly DW, Nakazawa S, Zienkiewicz OC, Heinrich JC (1980) A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems. Int J Numer Methods Eng 15:1705–1711MathSciNetCrossRefMATH
24.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRefMATH Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRefMATH
25.
Zurück zum Zitat Hughes TJR, Brooks AN (1982) A theoretical framework for Petrov–Galerkin methods with discontinuous weight functions: applications to the streamline upwind procedure. In: Gallagher RH, Norrie DH, Oden JT, Zienkiewicz OC (eds) Finite elements in fluids, vol IV. Wiley, London, pp 46–65 Hughes TJR, Brooks AN (1982) A theoretical framework for Petrov–Galerkin methods with discontinuous weight functions: applications to the streamline upwind procedure. In: Gallagher RH, Norrie DH, Oden JT, Zienkiewicz OC (eds) Finite elements in fluids, vol IV. Wiley, London, pp 46–65
26.
Zurück zum Zitat Hughes TJR, Brooks AN (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD 34. ASME, New York Hughes TJR, Brooks AN (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD 34. ASME, New York
27.
Zurück zum Zitat Cockburn B, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comput 52(186):411–435MathSciNetMATH Cockburn B, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comput 52(186):411–435MathSciNetMATH
28.
29.
30.
31.
32.
Zurück zum Zitat Liu WK, Jun S, Sihling DT, Chen Y, Hao W (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluids 24:1391–1415MathSciNetCrossRefMATH Liu WK, Jun S, Sihling DT, Chen Y, Hao W (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluids 24:1391–1415MathSciNetCrossRefMATH
33.
Zurück zum Zitat You Y, Chen JS, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31:316–326MATH You Y, Chen JS, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31:316–326MATH
35.
Zurück zum Zitat Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:49–74MathSciNetCrossRef Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:49–74MathSciNetCrossRef
36.
Zurück zum Zitat Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466CrossRefMATH Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466CrossRefMATH
37.
Zurück zum Zitat Chen JS, Yoon S, Wu CT (2002) Non-linear version of stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 53:2587–2615CrossRefMATH Chen JS, Yoon S, Wu CT (2002) Non-linear version of stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 53:2587–2615CrossRefMATH
38.
Zurück zum Zitat Li S, Liu WK (1996) Moving least square reproducing kernel method, part II: Fourier analysis. Comput Methods Appl Mech Eng 139:159–194CrossRefMATH Li S, Liu WK (1996) Moving least square reproducing kernel method, part II: Fourier analysis. Comput Methods Appl Mech Eng 139:159–194CrossRefMATH
39.
Zurück zum Zitat Guan C, Chi SW, Chen JS, Slawson TR, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38:1033–1047CrossRef Guan C, Chi SW, Chen JS, Slawson TR, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38:1033–1047CrossRef
40.
Zurück zum Zitat Lee SH, Kim HJ, Jun S (2000) Two scale meshfree method for the adaptivity of 3-D stress concentration problems. Comput Mech 26:376–387CrossRefMATH Lee SH, Kim HJ, Jun S (2000) Two scale meshfree method for the adaptivity of 3-D stress concentration problems. Comput Mech 26:376–387CrossRefMATH
41.
Zurück zum Zitat Jun S, Im S (2000) Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Comput Mech 25:257–266CrossRefMATH Jun S, Im S (2000) Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Comput Mech 25:257–266CrossRefMATH
42.
Zurück zum Zitat Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, BerlinMATH Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, BerlinMATH
43.
Zurück zum Zitat Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRefMATH Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, BerlinCrossRefMATH
44.
Zurück zum Zitat Levy DW, Powell KG, van Leer B (1993) Use of a rotated Riemann solver for the two-dimensional Euler equations. J Comput Phys 106:201–214CrossRefMATH Levy DW, Powell KG, van Leer B (1993) Use of a rotated Riemann solver for the two-dimensional Euler equations. J Comput Phys 106:201–214CrossRefMATH
45.
Zurück zum Zitat Chen JS, Wang HP (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetCrossRefMATH Chen JS, Wang HP (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetCrossRefMATH
Metadaten
Titel
Stable and flux-conserved meshfree formulation to model shocks
verfasst von
Michael J. Roth
Jiun-Shyan Chen
Thomas R. Slawson
Kent T. Danielson
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1260-8

Weitere Artikel der Ausgabe 5/2016

Computational Mechanics 5/2016 Zur Ausgabe

Neuer Inhalt