Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2020

24.08.2020 | ORIGINAL ARTICLE

A hybrid model for force prediction in orthogonal cutting with chamfered tools considering size and edge effect

verfasst von: Jian Weng, Kejia Zhuang, Jinming Zhou, Han Ding

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Researches on the modeling of machining difficult-to-cut metals are important for optimization of the processing parameters, in which the force modeling is essential due to its significant influence on the performance of tools and the quality of parts. A semi-analytical method for force prediction in orthogonal cutting with chamfered tools considering both edge and size effect is proposed in this paper. The plastic deformation in the shear band was investigated using a parallel shear zone model and unequal division shear zone model. The influence of size effect on cutting force was discussed and a simplified expression of improvement factor is introduced to describe the sharp increase of shear stress under the condition of low feed rate. Simulations of orthogonal cutting with different chamfer lengths are conducted to analyze the variation of cutting force with respect to chamfer length, which reveals that the influence of chamfer length on cutting force is determined by the ratio of chamfer length to uncut chip thickness. A modified function considering the trend of material flow condition is proposed, which treats the total cutting force as a combination of cutting forces caused by chamfered edge and rake face. The calibration of constants in the proposed method is achieved using particle swarm optimization (PSO), a meta-heuristic algorithm for complicated non-linear models. The experiments show that the method works well on both fitting and predicting modules in orthogonal cutting of AISI 304 using cemented carbide tools with 15° chamfer angle or 25° chamfer angle.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Suárez A, Veiga F, Lacalle LNLD, Polvorosa R, Lutze S, Wretland A (2016) Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-alloy 718. J Mater Eng Perform 25(11):5076–5086CrossRef Suárez A, Veiga F, Lacalle LNLD, Polvorosa R, Lutze S, Wretland A (2016) Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-alloy 718. J Mater Eng Perform 25(11):5076–5086CrossRef
2.
Zurück zum Zitat Wojciechowski S (2015) The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces. Int J Mach Tool Manu 89:110–123CrossRef Wojciechowski S (2015) The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces. Int J Mach Tool Manu 89:110–123CrossRef
3.
Zurück zum Zitat Zhou J, Ren J (2020) Predicting cutting force with unequal division parallel-sided shear zone model for orthogonal cutting. Int J Adv Manuf Tech 107:4201–4211CrossRef Zhou J, Ren J (2020) Predicting cutting force with unequal division parallel-sided shear zone model for orthogonal cutting. Int J Adv Manuf Tech 107:4201–4211CrossRef
4.
Zurück zum Zitat Hu C, Zhuang K, Weng J, Zhang X, Ding H (2020) Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip-line field model. Int J Mech Sci 167:105273CrossRef Hu C, Zhuang K, Weng J, Zhang X, Ding H (2020) Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip-line field model. Int J Mech Sci 167:105273CrossRef
5.
Zurück zum Zitat Elhami S, Razfar M, Farahnakian M (2015) Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140. Int J Mech Sci 103:158–171CrossRef Elhami S, Razfar M, Farahnakian M (2015) Analytical, numerical and experimental study of cutting force during thermally enhanced ultrasonic assisted milling of hardened AISI 4140. Int J Mech Sci 103:158–171CrossRef
6.
Zurück zum Zitat Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press
7.
Zurück zum Zitat Weng J, Zhuang K, Chen D, Guo S, Ding H (2017) An analytical force prediction model for turning operation by round insert considering edge effect. Int J Mech Sci 128:168–180CrossRef Weng J, Zhuang K, Chen D, Guo S, Ding H (2017) An analytical force prediction model for turning operation by round insert considering edge effect. Int J Mech Sci 128:168–180CrossRef
8.
Zurück zum Zitat Wan M, Ma YC, Feng J, Zhang WH (2016) Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces. Int J Mech Sci 114:120–131CrossRef Wan M, Ma YC, Feng J, Zhang WH (2016) Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces. Int J Mech Sci 114:120–131CrossRef
9.
Zurück zum Zitat Chang SSF, Bone GM (2009) Thrust force model for vibration-assisted drilling of aluminum 6061-T6. Int J Mach Tool Manu 49(14):1070–1076CrossRef Chang SSF, Bone GM (2009) Thrust force model for vibration-assisted drilling of aluminum 6061-T6. Int J Mach Tool Manu 49(14):1070–1076CrossRef
10.
Zurück zum Zitat Fang N (2002) Machining with tool–chip contact on the tool secondary rake face—part I: a new slip-line model. Int J Mech Sci 44(11):2337–2354CrossRef Fang N (2002) Machining with tool–chip contact on the tool secondary rake face—part I: a new slip-line model. Int J Mech Sci 44(11):2337–2354CrossRef
11.
Zurück zum Zitat Waldorf DJ, DeVor RE, Kapoor SG (1998) A slip-line field for ploughing during orthogonal cutting. J Manuf Sci E-T ASME 120(4):693–699CrossRef Waldorf DJ, DeVor RE, Kapoor SG (1998) A slip-line field for ploughing during orthogonal cutting. J Manuf Sci E-T ASME 120(4):693–699CrossRef
12.
Zurück zum Zitat Abdelmoneim ME, Scrutton RF (1974) Tool edge roundness and stable build-up formation in finish machining. ASME J Eng Ind 96(4):1258–1267CrossRef Abdelmoneim ME, Scrutton RF (1974) Tool edge roundness and stable build-up formation in finish machining. ASME J Eng Ind 96(4):1258–1267CrossRef
13.
Zurück zum Zitat Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tool Manu 67(2):18–27CrossRef Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tool Manu 67(2):18–27CrossRef
14.
Zurück zum Zitat Ren H, Altintas Y (2000) Mechanics of machining with chamfered tools. J Manuf Sci E-T ASME 122(4):650–659CrossRef Ren H, Altintas Y (2000) Mechanics of machining with chamfered tools. J Manuf Sci E-T ASME 122(4):650–659CrossRef
15.
Zurück zum Zitat Zhuang K, Weng J, Zhu D, Ding H (2018) Analytical modeling and experimental validation of cutting forces considering edge effects and size effects with round chamfered ceramic tools. J Manuf Sci E-T ASME 140(8):081012CrossRef Zhuang K, Weng J, Zhu D, Ding H (2018) Analytical modeling and experimental validation of cutting forces considering edge effects and size effects with round chamfered ceramic tools. J Manuf Sci E-T ASME 140(8):081012CrossRef
16.
Zurück zum Zitat Wan M, Zhang W, Qin G, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tool Manu 47(11):1767–1776CrossRef Wan M, Zhang W, Qin G, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tool Manu 47(11):1767–1776CrossRef
17.
Zurück zum Zitat Zhou L, Peng F, Yan R, Yao P, Yang C, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tool Manu 97:29–41CrossRef Zhou L, Peng F, Yan R, Yao P, Yang C, Li B (2015) Analytical modeling and experimental validation of micro end-milling cutting forces considering edge radius and material strengthening effects. Int J Mach Tool Manu 97:29–41CrossRef
18.
Zurück zum Zitat Joshi SS, Melkote SN (2004) An explanation for the size-effect in machining using strain gradient plasticity. J Manuf Sci E-T ASME 126(4):679–684CrossRef Joshi SS, Melkote SN (2004) An explanation for the size-effect in machining using strain gradient plasticity. J Manuf Sci E-T ASME 126(4):679–684CrossRef
19.
Zurück zum Zitat Weng J, Zhuang K, Zhu D, Guo S, Ding H (2018) An analytical model for the prediction of force distribution of round insert considering edge effect and size effect. Int J Mech Sci 138:86–98CrossRef Weng J, Zhuang K, Zhu D, Guo S, Ding H (2018) An analytical model for the prediction of force distribution of round insert considering edge effect and size effect. Int J Mech Sci 138:86–98CrossRef
20.
Zurück zum Zitat Merchant ME (1944) Basic mechanics of the metal cutting process. J Appl Phys 11(A):168–175 Merchant ME (1944) Basic mechanics of the metal cutting process. J Appl Phys 11(A):168–175
21.
Zurück zum Zitat Oxley PLB, Young H (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood Publisher:136–182 Oxley PLB, Young H (1989) The mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood Publisher:136–182
22.
Zurück zum Zitat Lalwani DI, Mehta NK, Jain PK (2009) Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model. J Mater Process Tech 209(12):5305–5312CrossRef Lalwani DI, Mehta NK, Jain PK (2009) Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model. J Mater Process Tech 209(12):5305–5312CrossRef
23.
Zurück zum Zitat Astakhov VP, Xiao X (2008) A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Mach Sci Technol 12(3):325–347CrossRef Astakhov VP, Xiao X (2008) A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Mach Sci Technol 12(3):325–347CrossRef
24.
Zurück zum Zitat Schulz H (1989) Hochgeschwindigkeitsfräsen metallischer und nichtmetallischer Werkstoffe, vol pp. Hanser, Schulz H (1989) Hochgeschwindigkeitsfräsen metallischer und nichtmetallischer Werkstoffe, vol pp. Hanser,
25.
Zurück zum Zitat Tay AO, Stevenson MG, Davis GDV, Oxley PLB (1976) A numerical method for calculating temperature distributions in machining, from force and shear angle measurements. Int J Mach Tool Des Res 16(4):335–349CrossRef Tay AO, Stevenson MG, Davis GDV, Oxley PLB (1976) A numerical method for calculating temperature distributions in machining, from force and shear angle measurements. Int J Mach Tool Des Res 16(4):335–349CrossRef
26.
Zurück zum Zitat Rosakis P, Rosakis AJ, Ravichandran G, Hodowany J (2000) A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J Mech Phys Solids 48(3):581–607MathSciNetCrossRef Rosakis P, Rosakis AJ, Ravichandran G, Hodowany J (2000) A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J Mech Phys Solids 48(3):581–607MathSciNetCrossRef
27.
Zurück zum Zitat Nie D, Lu Z, Zhang K (2016) Hot bending behavior of SUS 304 stainless steel sheet assisted by resistance heating: multi-field coupling numerical simulation and experimental investigation. Int J Adv Manuf Tech 87(9–12):2763–2774CrossRef Nie D, Lu Z, Zhang K (2016) Hot bending behavior of SUS 304 stainless steel sheet assisted by resistance heating: multi-field coupling numerical simulation and experimental investigation. Int J Adv Manuf Tech 87(9–12):2763–2774CrossRef
28.
Zurück zum Zitat Li B, Wang X, Hu Y, Li C (2011) Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model. Int J Adv Manuf Tech 54(5–8):431–443CrossRef Li B, Wang X, Hu Y, Li C (2011) Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model. Int J Adv Manuf Tech 54(5–8):431–443CrossRef
29.
Zurück zum Zitat Tounsi N, Vincenti J, Otho A, Elbestawi M (2002) From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. Int J Mach Tool Manu 42(12):1373–1383CrossRef Tounsi N, Vincenti J, Otho A, Elbestawi M (2002) From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. Int J Mach Tool Manu 42(12):1373–1383CrossRef
30.
Zurück zum Zitat Fu Z, Chen X, Mao J, Xiong T (2018) An analytical force mode applied to three-dimensional turning based on a predictive machining theory. Int J Mech Sci 136:94–105CrossRef Fu Z, Chen X, Mao J, Xiong T (2018) An analytical force mode applied to three-dimensional turning based on a predictive machining theory. Int J Mech Sci 136:94–105CrossRef
31.
Zurück zum Zitat Orra K, Choudhury SK (2018) Mechanistic modelling for predicting cutting forces in machining considering effect of tool nose radius on chip formation and tool wear land. Int J Mech Sci 142-143:255–268CrossRef Orra K, Choudhury SK (2018) Mechanistic modelling for predicting cutting forces in machining considering effect of tool nose radius on chip formation and tool wear land. Int J Mech Sci 142-143:255–268CrossRef
32.
Zurück zum Zitat Zhao T, Zhou J, Bushlya V, Ståhl J (2017) Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel. Int J Adv Manuf Tech 91(9–12):3611–3618CrossRef Zhao T, Zhou J, Bushlya V, Ståhl J (2017) Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel. Int J Adv Manuf Tech 91(9–12):3611–3618CrossRef
33.
Zurück zum Zitat Moufki A, Dudzinski D, Le Coz G (2015) Prediction of cutting forces from an analytical model of oblique cutting, application to peripheral milling of Ti-6Al-4V alloy. Int J Adv Manuf Tech 81(1–4):615–626CrossRef Moufki A, Dudzinski D, Le Coz G (2015) Prediction of cutting forces from an analytical model of oblique cutting, application to peripheral milling of Ti-6Al-4V alloy. Int J Adv Manuf Tech 81(1–4):615–626CrossRef
34.
Zurück zum Zitat Yong Z, Xiang X, Jin W, Chen T, Wang CH (2018) Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load. Int J Mech Sci 140:407–431CrossRef Yong Z, Xiang X, Jin W, Chen T, Wang CH (2018) Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load. Int J Mech Sci 140:407–431CrossRef
35.
Zurück zum Zitat Arasomwan MA, Adewumi AO (2013) On the performance of linear decreasing inertia weight particle swarm optimization for global optimization. Sci World J 2013(2013):860289 Arasomwan MA, Adewumi AO (2013) On the performance of linear decreasing inertia weight particle swarm optimization for global optimization. Sci World J 2013(2013):860289
36.
Zurück zum Zitat Bai W, Sun R, Gao Y, Leopold J (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Tech 83(5–8):1025–1036CrossRef Bai W, Sun R, Gao Y, Leopold J (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Tech 83(5–8):1025–1036CrossRef
Metadaten
Titel
A hybrid model for force prediction in orthogonal cutting with chamfered tools considering size and edge effect
verfasst von
Jian Weng
Kejia Zhuang
Jinming Zhou
Han Ding
Publikationsdatum
24.08.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05943-1

Weitere Artikel der Ausgabe 5-6/2020

The International Journal of Advanced Manufacturing Technology 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.