Skip to main content
Erschienen in: Autonomous Robots 3/2018

21.07.2017

A kernel-based approach to learning contact distributions for robot manipulation tasks

verfasst von: Oliver Kroemer, Simon Leischnig, Stefan Luettgen, Jan Peters

Erschienen in: Autonomous Robots | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Manipulation tasks often require robots to recognize interactions between objects. For example, a robot may need to determine if it has grasped an object properly or if one object is resting on another in a stable manner. These interactions usually depend on the contacts between the objects, with different distributions of contacts affording different interactions. In this paper, we address the problem of learning to recognize interactions between objects based on contact distributions. We present a kernel-based approach for representing the estimated contact distributions. The kernel can be used for various interactions, and it allows the robot to employ a variety of kernel methods from machine learning. The approach was evaluated on blind grasping, lifting, and stacking tasks. Using 30 training samples and the proposed kernel, the robot already achieved classification accuracies of 71.9, 85.93, and 97.5% for the blind grasping, lifting and stacking tasks respectively. The kernel was also used to cluster interactions using spectral clustering. The clustering method successfully differentiated between different types of interactions, including placing, inserting, and pushing. The contact points were extracted using tactile sensors or 3D point cloud models of the objects. The robot could construct small towers of assorted blocks using the classifier for the stacking task.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdo, N., Kretzschmar, H., Spinello, L., & Stachniss, C. (2013). Learning manipulation actions from a few demonstrations. In: International conference on robotics and automation (ICRA) Abdo, N., Kretzschmar, H., Spinello, L., & Stachniss, C. (2013). Learning manipulation actions from a few demonstrations. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Amores, J. (2013). Multiple instance classification: Review, taxonomy and comparative study. Artificial Intelligence, 201, 81–105.MathSciNetCrossRefMATH Amores, J. (2013). Multiple instance classification: Review, taxonomy and comparative study. Artificial Intelligence, 201, 81–105.MathSciNetCrossRefMATH
Zurück zum Zitat Bekiroglu, Y., Detry, R., & Kragic, D. (2011) Learning tactile characterizations of object- and pose-specific grasps. In: International conference on intelligent robots and systems (IROS) Bekiroglu, Y., Detry, R., & Kragic, D. (2011) Learning tactile characterizations of object- and pose-specific grasps. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat Ben Amor, H., Kroemer, O., Hillenbrand, U., Neumann, G., & Peters, J. (2012). Generalization of human grasping for multi-fingered robot hands. In: International conference on intelligent robots and systems (IROS) Ben Amor, H., Kroemer, O., Hillenbrand, U., Neumann, G., & Peters, J. (2012). Generalization of human grasping for multi-fingered robot hands. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat Bicchi, A., & Kumar, V. (2000). Robotic grasping and contact: A review. In: International conference on robotics and automation (ICRA) Bicchi, A., & Kumar, V. (2000). Robotic grasping and contact: A review. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Bohg, J., Johnson-Roberson, M., León, B., Felip, J., Gratal, X., Bergström, N., Kragic, D., & Morales, A. (2011). Mind the gap–robotic grasping under incomplete observation. In: International conference on robotics and automation (ICRA) Bohg, J., Johnson-Roberson, M., León, B., Felip, J., Gratal, X., Bergström, N., Kragic, D., & Morales, A. (2011). Mind the gap–robotic grasping under incomplete observation. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Bohg, J., Morales, A., Asfour, T., & Kragic, D. (2014). Data-driven grasp synthesis-a survey. IEEE Transactions on Robotics, 30, 289–309.CrossRef Bohg, J., Morales, A., Asfour, T., & Kragic, D. (2014). Data-driven grasp synthesis-a survey. IEEE Transactions on Robotics, 30, 289–309.CrossRef
Zurück zum Zitat Boularias, A., Kroemer, O., & Peters, J. (2011). Learning robot grasping from 3d images with markov random fields. In: International conference on intelligent robot systems (IROS) Boularias, A., Kroemer, O., & Peters, J. (2011). Learning robot grasping from 3d images with markov random fields. In: International conference on intelligent robot systems (IROS)
Zurück zum Zitat Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G., & Schaal, S. (2016). Generalizing regrasping with supervised policy learning. In: International symposium on experimental robotics (ISER) Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G., & Schaal, S. (2016). Generalizing regrasping with supervised policy learning. In: International symposium on experimental robotics (ISER)
Zurück zum Zitat Chen, Z., Lii, N. Y., Wimboeck, T., Fan, S., Jin, M., Borst, C., & Liu, H. (2010). Experimental study on impedance control for the five-finger dexterous robot hand dlr-hit ii. In: International conference on intelligent robots and systems (IROS) Chen, Z., Lii, N. Y., Wimboeck, T., Fan, S., Jin, M., Borst, C., & Liu, H. (2010). Experimental study on impedance control for the five-finger dexterous robot hand dlr-hit ii. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat Dang, H., & Allen, P. K. (2012). Learning grasp stability. In: International conference on robotics and automation (ICRA) Dang, H., & Allen, P. K. (2012). Learning grasp stability. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Detry, R., Ek, C. H., Madry, M., Piater, J., & Kragic, D. (2012). Generalizing grasps across partly similar objects. In: International conference on robotics and automation (ICRA) Detry, R., Ek, C. H., Madry, M., Piater, J., & Kragic, D. (2012). Generalizing grasps across partly similar objects. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Eppner, C., & Brock, O. (2013). Grasping unknown objects by exploiting shape adaptability and environmental constraints. In: International conference on intelligent robots and systems (IROS) Eppner, C., & Brock, O. (2013). Grasping unknown objects by exploiting shape adaptability and environmental constraints. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat Ferrari, C., & Canny, J. (1992). Planning optimal grasps. In: International conference on robotics and automation (ICRA) pp 2290–2295 Ferrari, C., & Canny, J. (1992). Planning optimal grasps. In: International conference on robotics and automation (ICRA) pp 2290–2295
Zurück zum Zitat Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates. Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates.
Zurück zum Zitat Griffith, S., Sinapov, J., Sukhoy, V., & Stoytchev, A. (2012). A behavior-grounded approach to forming object categories: Separating containers from noncontainers. IEEE Transactions on Autonomous Mental Development, 4(1), 54–69.CrossRef Griffith, S., Sinapov, J., Sukhoy, V., & Stoytchev, A. (2012). A behavior-grounded approach to forming object categories: Separating containers from noncontainers. IEEE Transactions on Autonomous Mental Development, 4(1), 54–69.CrossRef
Zurück zum Zitat Goldfeder, C., Ciocarlie, M., Dang, H., & Allen, P. K. (2009). The Columbia grasp database. In: International conference on robotics and automation (ICRA) Goldfeder, C., Ciocarlie, M., Dang, H., & Allen, P. K. (2009). The Columbia grasp database. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Hermans, T., Li, F, Rehg, J. M., & Bobick, A. F. (2013). Learning contact locations for pushing and orienting unknown objects. In: International conference on humanoid robots Hermans, T., Li, F, Rehg, J. M., & Bobick, A. F. (2013). Learning contact locations for pushing and orienting unknown objects. In: International conference on humanoid robots
Zurück zum Zitat Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., et al. (2013). Learning of grasp selection based on shape-templates. Autonomous Robots, 36, 51–65.CrossRef Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., et al. (2013). Learning of grasp selection based on shape-templates. Autonomous Robots, 36, 51–65.CrossRef
Zurück zum Zitat Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of Statistics Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of Statistics
Zurück zum Zitat Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research (JMLR), 5, 819–844. Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research (JMLR), 5, 819–844.
Zurück zum Zitat Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research (JMLR), 5, 819–844.MathSciNetMATH Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research (JMLR), 5, 819–844.MathSciNetMATH
Zurück zum Zitat Jenssen, R., Principe, J. C., Erdogmus, D., & Eltoft, T. (2006). The cauchy-schwarz divergence and parzen windowing: Connections to graph theory and mercer kernels. Journal of the Franklin Institute, 343(6), 614–629.MathSciNetCrossRefMATH Jenssen, R., Principe, J. C., Erdogmus, D., & Eltoft, T. (2006). The cauchy-schwarz divergence and parzen windowing: Connections to graph theory and mercer kernels. Journal of the Franklin Institute, 343(6), 614–629.MathSciNetCrossRefMATH
Zurück zum Zitat Jentoft, L. P., Tenzer, Y., Vogt, D., Liu, J., Wood, R. J., Howe, R. D. (2013). Flexible, stretchable tactile arrays from mems barometers. In: International conference on advanced robotics (ICAR) Jentoft, L. P., Tenzer, Y., Vogt, D., Liu, J., Wood, R. J., Howe, R. D. (2013). Flexible, stretchable tactile arrays from mems barometers. In: International conference on advanced robotics (ICAR)
Zurück zum Zitat Jiang, Y., Lim, M., Zheng, C., & Saxena, A. (2012). Learning to place new objects in a scene. International Journal of Robotic Research (IJRR), 31(9), 1021–1043.CrossRef Jiang, Y., Lim, M., Zheng, C., & Saxena, A. (2012). Learning to place new objects in a scene. International Journal of Robotic Research (IJRR), 31(9), 1021–1043.CrossRef
Zurück zum Zitat Kappler, D., Bohg, B., & Schaal, S. (2015). Leveraging big data for grasp planning. In: IEEE international conference on robotics and automation (ICRA) Kappler, D., Bohg, B., & Schaal, S. (2015). Leveraging big data for grasp planning. In: IEEE international conference on robotics and automation (ICRA)
Zurück zum Zitat Karayiannidis, Y., Smith, C., Vina, F. E., & Kragic, D. (2014). Online contact point estimation for uncalibrated tool use. In: International conference on robotics and automation (ICRA) Karayiannidis, Y., Smith, C., Vina, F. E., & Kragic, D. (2014). Online contact point estimation for uncalibrated tool use. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Kopicki, M., Detry, R., Adjigble, M., Stolkin, R., Leonardis, A., & Wyatt, J. L. (2015). One shot learning and generation of dexterous grasps for novel objects. The International Journal of Robotics Research (IJRR), 35, 959–976.CrossRef Kopicki, M., Detry, R., Adjigble, M., Stolkin, R., Leonardis, A., & Wyatt, J. L. (2015). One shot learning and generation of dexterous grasps for novel objects. The International Journal of Robotics Research (IJRR), 35, 959–976.CrossRef
Zurück zum Zitat Kopicki, M. S., Zurek, S., Stolkin, R., Morwald, T., & Wyatt, J. L. (2011). Learning to predict how rigid objects behave under simple manipulation. In: International conference on robotics and automation (ICRA) Kopicki, M. S., Zurek, S., Stolkin, R., Morwald, T., & Wyatt, J. L. (2011). Learning to predict how rigid objects behave under simple manipulation. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Kroemer, O., Ben Amor, H., Ewerton, M., & Peters, J. (2012a). Point cloud completion using extrusions. In: The international conference on humanoid robots Kroemer, O., Ben Amor, H., Ewerton, M., & Peters, J. (2012a). Point cloud completion using extrusions. In: The international conference on humanoid robots
Zurück zum Zitat Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., & Peters, J. (2015). Towards learning hierarchical skills for multi-phase manipulation tasks. In: International conference on robotics and automation (ICRA) Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., & Peters, J. (2015). Towards learning hierarchical skills for multi-phase manipulation tasks. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Kroemer, O., & Peters, J. (2014). Predicting object interactions from contact distributions. In: International conference on intelligent robots and systems Kroemer, O., & Peters, J. (2014). Predicting object interactions from contact distributions. In: International conference on intelligent robots and systems
Zurück zum Zitat Kroemer, O., Ugur, E., Oztop, E., & Peters, J. (2012b). A kernel-based approach to direct action perception. In: International conference on robotics and automation (ICRA) Kroemer, O., Ugur, E., Oztop, E., & Peters, J. (2012b). A kernel-based approach to direct action perception. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Kulick, J., Lang, T., Toussaint, M., & Lopes, M. (2013). Active Learning for Teaching a Robot Grounded Relational Symbols. In: International joint conference on artificial intelligence (IJCAI) Kulick, J., Lang, T., Toussaint, M., & Lopes, M. (2013). Active Learning for Teaching a Robot Grounded Relational Symbols. In: International joint conference on artificial intelligence (IJCAI)
Zurück zum Zitat Laaksonen, J., Nikandrova, E., & Kyrki, V. (2012). Probabilistic sensor-based grasping. In: International conference on intelligent robots and systems (IROS) Laaksonen, J., Nikandrova, E., & Kyrki, V. (2012). Probabilistic sensor-based grasping. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat Leischnig, S., Luettgen, S., Kroemer, O., & Peters, J. (2015). A comparison of contact distribution representations for learning to predict object interactions. In: International conference on humanoid robots Leischnig, S., Luettgen, S., Kroemer, O., & Peters, J. (2015). A comparison of contact distribution representations for learning to predict object interactions. In: International conference on humanoid robots
Zurück zum Zitat Lenz, I., Lee, H., & Saxena, A. (2013). Deep learning for detecting robotic grasps. In: Robotics: Science and systems (RSS) Lenz, I., Lee, H., & Saxena, A. (2013). Deep learning for detecting robotic grasps. In: Robotics: Science and systems (RSS)
Zurück zum Zitat Li, Q., Schürmann, C., Haschke, R., & Ritter, H. J. (2013) A control framework for tactile servoing. In: Robotics: Science and systems (R:SS) Li, Q., Schürmann, C., Haschke, R., & Ritter, H. J. (2013) A control framework for tactile servoing. In: Robotics: Science and systems (R:SS)
Zurück zum Zitat Li, Z., & Sastry, S. S. (1988). Task-oriented optimal grasping by multifingered robot hands. Journal of Robotics and Automation, 4(1), 32–44. Li, Z., & Sastry, S. S. (1988). Task-oriented optimal grasping by multifingered robot hands. Journal of Robotics and Automation, 4(1), 32–44.
Zurück zum Zitat Madry, M., Bo, L., Kragic, D., & Fox, D. (2014). ST-HMP: Unsupervised spatio-temporal feature learning for tactile data. In: International conference on robotics and automation (ICRA) Madry, M., Bo, L., Kragic, D., & Fox, D. (2014). ST-HMP: Unsupervised spatio-temporal feature learning for tactile data. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Miller, A., & Allen, P. (1999). Examples of 3d grasp quality computations. In: International conference on robotics and automation (ICRA) Miller, A., & Allen, P. (1999). Examples of 3d grasp quality computations. In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Miller, A., & Allen, P. (2004). Graspit!: A versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine, 11, 110–122.CrossRef Miller, A., & Allen, P. (2004). Graspit!: A versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine, 11, 110–122.CrossRef
Zurück zum Zitat Molchanov, A., Kroemer, O., Su, Z., & Sukhatme, G. S. (2016). Contact localization on grasped objects using tactile sensing. In: International conference on intelligent robots and systems (IROS) Molchanov, A., Kroemer, O., Su, Z., & Sukhatme, G. S. (2016). Contact localization on grasped objects using tactile sensing. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat Montesano, L., Lopes, M., Bernardino, A., & Santos-Victor, J. (2007). Modeling affordances using bayesian networks. In: International conference on intelligent robot systems (IROS) Montesano, L., Lopes, M., Bernardino, A., & Santos-Victor, J. (2007). Modeling affordances using bayesian networks. In: International conference on intelligent robot systems (IROS)
Zurück zum Zitat Ning, X., & Karypis, G. (2008). The set classification problem and solution methods. In: International conference on data mining workshops Ning, X., & Karypis, G. (2008). The set classification problem and solution methods. In: International conference on data mining workshops
Zurück zum Zitat Odhner, L. U., Jentoft, L. P., Claffee, M. R., Corson, N., Tenzer, Y., Ma, R. R., et al. (2014). A compliant, underactuated hand for robust manipulation. The International Journal of Robotics Research (IJRR), 33(5), 736–752.CrossRef Odhner, L. U., Jentoft, L. P., Claffee, M. R., Corson, N., Tenzer, Y., Ma, R. R., et al. (2014). A compliant, underactuated hand for robust manipulation. The International Journal of Robotics Research (IJRR), 33(5), 736–752.CrossRef
Zurück zum Zitat Roa, M. A., & Suàrez, R. (2015). Grasp quality measures: Review and performance. Autonomous Robots, 38, 65–88.CrossRef Roa, M. A., & Suàrez, R. (2015). Grasp quality measures: Review and performance. Autonomous Robots, 38, 65–88.CrossRef
Zurück zum Zitat Rosman, B., & Ramamoorthy, S. (2011). Learning spatial relationships between objects. The International Journal of Robotics Research, 30, 1328–1342.CrossRef Rosman, B., & Ramamoorthy, S. (2011). Learning spatial relationships between objects. The International Journal of Robotics Research, 30, 1328–1342.CrossRef
Zurück zum Zitat Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In: International conference on robotics and automation (ICRA) Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In: International conference on robotics and automation (ICRA)
Zurück zum Zitat Sahin, E., Cakmak, M., Dogar, M. R., Ugur, E., & Ucoluk, G. (2007). To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control. Adaptive Behavior, 4, 447–472.CrossRef Sahin, E., Cakmak, M., Dogar, M. R., Ugur, E., & Ucoluk, G. (2007). To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control. Adaptive Behavior, 4, 447–472.CrossRef
Zurück zum Zitat Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond (1st ed.). Cambridge: The MIT Press. Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond (1st ed.). Cambridge: The MIT Press.
Zurück zum Zitat Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.
Zurück zum Zitat Sjoo, K., & Jensfelt, P. (2011). Learning spatial relations from functional simulation. In: International conference on intelligent robots and systems (IROS) Sjoo, K., & Jensfelt, P. (2011). Learning spatial relations from functional simulation. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat ten Pa, A., & Platt, R. (2015). Using geometry to detect grasp poses in 3d point clouds. In: International symposium on robotics research (ISRR) ten Pa, A., & Platt, R. (2015). Using geometry to detect grasp poses in 3d point clouds. In: International symposium on robotics research (ISRR)
Zurück zum Zitat Trinkle, J., & Paul, R. P. (1990). Planning for dextrous manipulation with sliding contacts. International Journal of Robotics Research, 9(3), 24–48.CrossRef Trinkle, J., & Paul, R. P. (1990). Planning for dextrous manipulation with sliding contacts. International Journal of Robotics Research, 9(3), 24–48.CrossRef
Zurück zum Zitat Ugur, E., & Piater, J. (2015). Bottom-up learning of object categories, action effects and logical rules: From continuous manipulative exploration to symbolic planning. In: International conference on robotics and automation (ICRA), pp 2627–2633 Ugur, E., & Piater, J. (2015). Bottom-up learning of object categories, action effects and logical rules: From continuous manipulative exploration to symbolic planning. In: International conference on robotics and automation (ICRA), pp 2627–2633
Zurück zum Zitat Vedaldi, A., Gulshan, V., Varma, M., & Zisserman, A. (2009). Multiple kernels for object detection. In: International conference on computer vision (ICCV) Vedaldi, A., Gulshan, V., Varma, M., & Zisserman, A. (2009). Multiple kernels for object detection. In: International conference on computer vision (ICCV)
Zurück zum Zitat Veiga, F., van Hoof, H., Peters, J., & Hermans, T. (2015). Stabilizing novel objects by learning to predict tactile slip. In: International conference on intelligent robots and systems (IROS) Veiga, F., van Hoof, H., Peters, J., & Hermans, T. (2015). Stabilizing novel objects by learning to predict tactile slip. In: International conference on intelligent robots and systems (IROS)
Zurück zum Zitat Will, P. M., & Grossman, D. D. (1975). An experimental system for computer controlled mechanical assembly. IEEE Transactions on Computers, 24(9), 879–888.CrossRef Will, P. M., & Grossman, D. D. (1975). An experimental system for computer controlled mechanical assembly. IEEE Transactions on Computers, 24(9), 879–888.CrossRef
Metadaten
Titel
A kernel-based approach to learning contact distributions for robot manipulation tasks
verfasst von
Oliver Kroemer
Simon Leischnig
Stefan Luettgen
Jan Peters
Publikationsdatum
21.07.2017
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 3/2018
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9651-z

Weitere Artikel der Ausgabe 3/2018

Autonomous Robots 3/2018 Zur Ausgabe

Neuer Inhalt