Skip to main content
Erschienen in: Autonomous Robots 3/2018

15.07.2017

Using probabilistic movement primitives in robotics

verfasst von: Alexandros Paraschos, Christian Daniel, Jan Peters, Gerhard Neumann

Erschienen in: Autonomous Robots | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Movement Primitives are a well-established paradigm for modular movement representation and generation. They provide a data-driven representation of movements and support generalization to novel situations, temporal modulation, sequencing of primitives and controllers for executing the primitive on physical systems. However, while many MP frameworks exhibit some of these properties, there is a need for a unified framework that implements all of them in a principled way. In this paper, we show that this goal can be achieved by using a probabilistic representation. Our approach models trajectory distributions learned from stochastic movements. Probabilistic operations, such as conditioning can be used to achieve generalization to novel situations or to combine and blend movements in a principled way. We derive a stochastic feedback controller that reproduces the encoded variability of the movement and the coupling of the degrees of freedom of the robot. We evaluate and compare our approach on several simulated and real robot scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
2
This prior variance profile can be just set to \(\alpha \varvec{I}\), where \(\alpha \) is a small constant and \(\varvec{I}\) is the identity matrix.
 
3
The third derivative of \(\varvec{\Psi }\) can be computed numerically.
 
4
If inverse dynamics control (Peters et al. 2008) is used for the robot, the system reduces to a linear system where the terms \(\varvec{A}_{t}\), \(\varvec{B}_{t}\) and \(\varvec{c}_{t}\) are constant in time.
 
5
As we multiply the noise by \(\varvec{B}{{\mathrm{dt}}}\), we need to divide the covariance \(\varvec{\Sigma }_{u}\) of the control noise \(\varvec{\epsilon }_{u}\) by \({{\mathrm{dt}}}\) to obtain this desired behavior.
 
6
The observation noise is omitted as it represents independent noise which is not used for predicting the next state.
 
Literatur
Zurück zum Zitat Bruno, D., Calinon, S., Malekzadeh, M. S., & Caldwell, D. G. (2015). Learning the stiffness of a continuous soft manipulator from multiple demonstrations. In Intelligent robotics and applications (pp. 185–195). Bruno, D., Calinon, S., Malekzadeh, M. S., & Caldwell, D. G. (2015). Learning the stiffness of a continuous soft manipulator from multiple demonstrations. In Intelligent robotics and applications (pp. 185–195).
Zurück zum Zitat Buchli, J., Stulp, F., Theodorou, E., & Schaal, S. (2011). Learning variable impedance control. International Journal of Robotics Research, 30(7), 820–833.CrossRef Buchli, J., Stulp, F., Theodorou, E., & Schaal, S. (2011). Learning variable impedance control. International Journal of Robotics Research, 30(7), 820–833.CrossRef
Zurück zum Zitat Calinon, S. (2016). A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1), 1–29.CrossRef Calinon, S. (2016). A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1), 1–29.CrossRef
Zurück zum Zitat Calinon, S., D’Halluin, F., Sauser, E. L., Caldwell, D. G., & Billard, A. G. (2010). Learning and reproduction of gestures by imitation. IEEE Robotics and Automation Magazine, 17, 44–54.CrossRef Calinon, S., D’Halluin, F., Sauser, E. L., Caldwell, D. G., & Billard, A. G. (2010). Learning and reproduction of gestures by imitation. IEEE Robotics and Automation Magazine, 17, 44–54.CrossRef
Zurück zum Zitat Calinon, S., Sardellitti, I., & Caldwell, D. G. (2010b). Learning-based control strategy for safe human–robot interaction exploiting task and robot redundancies. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 249–254). Calinon, S., Sardellitti, I., & Caldwell, D. G. (2010b). Learning-based control strategy for safe human–robot interaction exploiting task and robot redundancies. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 249–254).
Zurück zum Zitat Daniel, C., Neumann, G., & Peters, J. (2012). Learning concurrent motor skills in versatile solution spaces. In IEEE/RSJ international conference on intelligent robots and systems (IROS), (pp. 3591–3597). Daniel, C., Neumann, G., & Peters, J. (2012). Learning concurrent motor skills in versatile solution spaces. In IEEE/RSJ international conference on intelligent robots and systems (IROS), (pp. 3591–3597).
Zurück zum Zitat da Silva, B., Konidaris, G., & Barto, A. (2012). Learning parameterized skills. In International conference on machine learning (pp. 1679–1686). da Silva, B., Konidaris, G., & Barto, A. (2012). Learning parameterized skills. In International conference on machine learning (pp. 1679–1686).
Zurück zum Zitat dAvella, A., & Bizzi, E. (2005). Shared and specific muscle synergies in natural motor behaviors. Proceedings of the National Academy of Sciences (PNAS), 102(3), 3076–3081.CrossRef dAvella, A., & Bizzi, E. (2005). Shared and specific muscle synergies in natural motor behaviors. Proceedings of the National Academy of Sciences (PNAS), 102(3), 3076–3081.CrossRef
Zurück zum Zitat Degallier, S., Righetti, L., Gay, S., & Ijspeert, A. (2011). Toward simple control for complex, autonomous robotic applications: Combining discrete and rhythmic motor primitives. Autonomous Robots, 31, 155–181.CrossRef Degallier, S., Righetti, L., Gay, S., & Ijspeert, A. (2011). Toward simple control for complex, autonomous robotic applications: Combining discrete and rhythmic motor primitives. Autonomous Robots, 31, 155–181.CrossRef
Zurück zum Zitat Dominici, N., Ivanenko, Y. P., Cappellini, G., dAvella, A., Mondì, V., Cicchese, M., et al. (2011). Locomotor primitives in newborn babies and their development. Science, 334(6058), 997–999.CrossRef Dominici, N., Ivanenko, Y. P., Cappellini, G., dAvella, A., Mondì, V., Cicchese, M., et al. (2011). Locomotor primitives in newborn babies and their development. Science, 334(6058), 997–999.CrossRef
Zurück zum Zitat Ernesti, J., Righetti, L., Do, M., Asfour, T., & Schaal, S. (2012). Encoding of periodic and their transient motions by a single dynamic movement primitive. In IEEE-RAS international conference on humanoid robots (humanoids) (pp. 57–64). Ernesti, J., Righetti, L., Do, M., Asfour, T., & Schaal, S. (2012). Encoding of periodic and their transient motions by a single dynamic movement primitive. In IEEE-RAS international conference on humanoid robots (humanoids) (pp. 57–64).
Zurück zum Zitat Ewerton, M., Maeda, G., Peters, J., & Neumann, G. (2015). Learning motor skills from partially observed movements executed at different speeds. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 456–463). Ewerton, M., Maeda, G., Peters, J., & Neumann, G. (2015). Learning motor skills from partially observed movements executed at different speeds. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 456–463).
Zurück zum Zitat Forte, D., Gams, A., Morimoto, J., & Ude, A. (2012). On-line motion synthesis and adaptation using a trajectory database. Robotics and Autonomous Systems, 60, 1327–1339.CrossRef Forte, D., Gams, A., Morimoto, J., & Ude, A. (2012). On-line motion synthesis and adaptation using a trajectory database. Robotics and Autonomous Systems, 60, 1327–1339.CrossRef
Zurück zum Zitat Gams, A., Nemec, B., Ijspeert, A. J., & Ude, A. (2014). Coupling movement primitives: Interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 30(4), 816–830.CrossRef Gams, A., Nemec, B., Ijspeert, A. J., & Ude, A. (2014). Coupling movement primitives: Interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 30(4), 816–830.CrossRef
Zurück zum Zitat Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103–118.MathSciNetCrossRefMATH Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103–118.MathSciNetCrossRefMATH
Zurück zum Zitat Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.CrossRef Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.CrossRef
Zurück zum Zitat Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.MathSciNetCrossRefMATH Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.MathSciNetCrossRefMATH
Zurück zum Zitat Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In Advances in neural information processing systems (NIPS) (pp. 1547–1554). Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In Advances in neural information processing systems (NIPS) (pp. 1547–1554).
Zurück zum Zitat Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRef Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRef
Zurück zum Zitat Khansari-Zadeh, S. M., Kronander, K., & Billard, A. (2014). Modeling robot discrete movements with state-varying stiffness and damping: A framework for integrated motion generation and impedance control. In Robotics science and systems (R:SS). Khansari-Zadeh, S. M., Kronander, K., & Billard, A. (2014). Modeling robot discrete movements with state-varying stiffness and damping: A framework for integrated motion generation and impedance control. In Robotics science and systems (R:SS).
Zurück zum Zitat Klug, S., Lens, T., von Stryk, O., Möhl, B., & Karguth, A. (2008). Biologically inspired robot manipulator for new applications in automation engineering. In Proceedings of robotik. Klug, S., Lens, T., von Stryk, O., Möhl, B., & Karguth, A. (2008). Biologically inspired robot manipulator for new applications in automation engineering. In Proceedings of robotik.
Zurück zum Zitat Kober, J., Muelling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., & Peters, J. (2010). Movement templates for learning of hitting and batting. In International conference on robotics and automation (ICRA) (pp. 853–858). Kober, J., Muelling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., & Peters, J. (2010). Movement templates for learning of hitting and batting. In International conference on robotics and automation (ICRA) (pp. 853–858).
Zurück zum Zitat Konidaris, G., Kuindersma, S., Grupen, R., & Barto, A. (2012). Robot learning from demonstration by constructing skill trees. International Journal of Robotics Research (IJRR), 31(3), 360–375.CrossRef Konidaris, G., Kuindersma, S., Grupen, R., & Barto, A. (2012). Robot learning from demonstration by constructing skill trees. International Journal of Robotics Research (IJRR), 31(3), 360–375.CrossRef
Zurück zum Zitat Kormushev, P., Calinon, S., & Caldwell, D. G. (2010). Robot motor skill coordination with EM-based reinforcement learning. In International conference on intelligent robots and systems (IROS) (pp. 3232–3237). Kormushev, P., Calinon, S., & Caldwell, D. G. (2010). Robot motor skill coordination with EM-based reinforcement learning. In International conference on intelligent robots and systems (IROS) (pp. 3232–3237).
Zurück zum Zitat Kulvicius, T., Ning, K., Tamosiunaite, M., & Worgotter, F. (2012). Joining movement sequences: Modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Transactions on Robotics, 28(1), 145–157.CrossRef Kulvicius, T., Ning, K., Tamosiunaite, M., & Worgotter, F. (2012). Joining movement sequences: Modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Transactions on Robotics, 28(1), 145–157.CrossRef
Zurück zum Zitat Lazaric, A., & Ghavamzadeh, M. (2010). Bayesian multi-task reinforcement learning. In International conference on machine learning (ICML) (pp. 599–606). Lazaric, A., & Ghavamzadeh, M. (2010). Bayesian multi-task reinforcement learning. In International conference on machine learning (ICML) (pp. 599–606).
Zurück zum Zitat Li, W., & Todorov, E. (2010). Iterative linear quadratic regulator design for nonlinear biological movement systems. In International conference on informatics in control, automation and robotics (ICINCO) (pp. 222–229). Li, W., & Todorov, E. (2010). Iterative linear quadratic regulator design for nonlinear biological movement systems. In International conference on informatics in control, automation and robotics (ICINCO) (pp. 222–229).
Zurück zum Zitat Maeda, G., Ewerton, M., Lioutikov, R., Amor, H., Peters, J., & Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In International conference on humanoid robots (Humanoids) (pp. 527–534). Maeda, G., Ewerton, M., Lioutikov, R., Amor, H., Peters, J., & Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In International conference on humanoid robots (Humanoids) (pp. 527–534).
Zurück zum Zitat Matsubara, T., Hyon, S. H., & Morimoto, J. (2011). Learning parametric dynamic movement primitives from multiple demonstrations. Neural Networks, 24(5), 493–500.CrossRef Matsubara, T., Hyon, S. H., & Morimoto, J. (2011). Learning parametric dynamic movement primitives from multiple demonstrations. Neural Networks, 24(5), 493–500.CrossRef
Zurück zum Zitat Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2012). On the kinematic motion primitives (kMPs)—Theory and application. Frontiers in Neurorobotics, 6(10), 1–18. Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2012). On the kinematic motion primitives (kMPs)—Theory and application. Frontiers in Neurorobotics, 6(10), 1–18.
Zurück zum Zitat Muelling, K., Kober, J., & Peters, J. (2011). A biomimetic approach to robot table tennis. Adaptive Behavior Journal, 19(5), 359–376.CrossRef Muelling, K., Kober, J., & Peters, J. (2011). A biomimetic approach to robot table tennis. Adaptive Behavior Journal, 19(5), 359–376.CrossRef
Zurück zum Zitat Mülling, K., Kober, J., Kroemer, O., & Peters, J. (2013). Learning to select and generalize striking movements in robot table tennis. The International Journal of Robotics Research, 32(3), 263–279.CrossRef Mülling, K., Kober, J., Kroemer, O., & Peters, J. (2013). Learning to select and generalize striking movements in robot table tennis. The International Journal of Robotics Research, 32(3), 263–279.CrossRef
Zurück zum Zitat Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47, 79–91.CrossRef Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., & Kawato, M. (2004). Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 47, 79–91.CrossRef
Zurück zum Zitat Neumann, G., Daniel, C., Paraschos, A., Kupcsik, A., & Peters, J. (2014). Learning modular policies for robotics. Frontiers in Computational Neuroscience, 8(62), 1. Neumann, G., Daniel, C., Paraschos, A., Kupcsik, A., & Peters, J. (2014). Learning modular policies for robotics. Frontiers in Computational Neuroscience, 8(62), 1.
Zurück zum Zitat Neumann, G., Maass, W., & Peters, J. (2009). Learning complex motions by sequencing simpler motion templates. In International conference on machine learning (ICML) (pp. 753–760) Neumann, G., Maass, W., & Peters, J. (2009). Learning complex motions by sequencing simpler motion templates. In International conference on machine learning (ICML) (pp. 753–760)
Zurück zum Zitat OHagan, A., & Forster, J. (2004). Kendalls advanced theory of statistics: Bayesian inference (2nd ed.). Arnold, New York. Technical report, ISBN 0-340-80752-0. OHagan, A., & Forster, J. (2004). Kendalls advanced theory of statistics: Bayesian inference (2nd ed.). Arnold, New York. Technical report, ISBN 0-340-80752-0.
Zurück zum Zitat Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013a). Probabilistic movement primitives. In Advances in neural information processing systems (NIPS) (pp. 2616–2624). Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013a). Probabilistic movement primitives. In Advances in neural information processing systems (NIPS) (pp. 2616–2624).
Zurück zum Zitat Paraschos, A., Neumann, G., & Peters, J. (2013b). A probabilistic approach to robot trajectory generation. In International conference on humanoid robots (humanoids) (pp. 477–483) Paraschos, A., Neumann, G., & Peters, J. (2013b). A probabilistic approach to robot trajectory generation. In International conference on humanoid robots (humanoids) (pp. 477–483)
Zurück zum Zitat Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In International conference on robotics and automation (ICRA) (pp. 763–768) Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In International conference on robotics and automation (ICRA) (pp. 763–768)
Zurück zum Zitat Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. In International conference on intelligent robots and systems (IROS) (pp. 365–371) Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. In International conference on intelligent robots and systems (IROS) (pp. 365–371)
Zurück zum Zitat Peters, J., Mistry, M., Udwadia, F. E., Nakanishi, J., & Schaal, S. (2008). A unifying methodology for robot control with redundant DOFs. Autonomous Robots, 24(1), 1–12.CrossRef Peters, J., Mistry, M., Udwadia, F. E., Nakanishi, J., & Schaal, S. (2008). A unifying methodology for robot control with redundant DOFs. Autonomous Robots, 24(1), 1–12.CrossRef
Zurück zum Zitat Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern generators: An application to biped locomotion control. In International conference on robotics and automation, (ICRA) (pp. 1585–1590). Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern generators: An application to biped locomotion control. In International conference on robotics and automation, (ICRA) (pp. 1585–1590).
Zurück zum Zitat Rozo, L., Calinon, S., Caldwell, D., Jiménez, P., & Torras, C. (2013). Learning collaborative impedance-based robot behaviors. In AAAI conference on artificial intelligence (pp. 1422–1428). Rozo, L., Calinon, S., Caldwell, D., Jiménez, P., & Torras, C. (2013). Learning collaborative impedance-based robot behaviors. In AAAI conference on artificial intelligence (pp. 1422–1428).
Zurück zum Zitat Rückert, E. A., Neumann, G., Toussaint, M., & Maass, W. (2012). Learned graphical models for probabilistic planning provide a new class of movement primitives. Frontiers in Computational Neuroscience, 6(97), 1. Rückert, E. A., Neumann, G., Toussaint, M., & Maass, W. (2012). Learned graphical models for probabilistic planning provide a new class of movement primitives. Frontiers in Computational Neuroscience, 6(97), 1.
Zurück zum Zitat Rueckert, E., Mundo, J., Paraschos, A., Peters, J., & Neumann, G. (2015). Extracting low-dimensional control variables for movement primitives. In International conference on robotics and automation (ICRA) (pp. 1511–1518). Rueckert, E., Mundo, J., Paraschos, A., Peters, J., & Neumann, G. (2015). Extracting low-dimensional control variables for movement primitives. In International conference on robotics and automation (ICRA) (pp. 1511–1518).
Zurück zum Zitat Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs. optimal control—A unifying view. Computational Neuroscience: Theoretical Insights into Brain Function, 165, 425–445. Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs. optimal control—A unifying view. Computational Neuroscience: Theoretical Insights into Brain Function, 165, 425–445.
Zurück zum Zitat Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2005). Learning movement primitives. In International symposium on robotics research (pp. 561–572). Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2005). Learning movement primitives. In International symposium on robotics research (pp. 561–572).
Zurück zum Zitat Stark, H., & Woods, J. (2001). Probability and random processes with applications to signal processing (3rd ed.). Upper Saddle River: Prentice-Hall. Stark, H., & Woods, J. (2001). Probability and random processes with applications to signal processing (3rd ed.). Upper Saddle River: Prentice-Hall.
Zurück zum Zitat Stengel, R. F. (2012). Optimal control and estimation. North Chelmsford, MA: Courier Corporation.MATH Stengel, R. F. (2012). Optimal control and estimation. North Chelmsford, MA: Courier Corporation.MATH
Zurück zum Zitat Todorov, E. (2008). General duality between optimal control and estimation. Conference on Decision and Control, 5, 4286–4292. Todorov, E. (2008). General duality between optimal control and estimation. Conference on Decision and Control, 5, 4286–4292.
Zurück zum Zitat Todorov, E., & Jordan, M. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 1226–1235.CrossRef Todorov, E., & Jordan, M. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 1226–1235.CrossRef
Zurück zum Zitat Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In International conference on machine learning (ICML) (pp. 1049–1056). Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In International conference on machine learning (ICML) (pp. 1049–1056).
Zurück zum Zitat Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. Transactions in Robotics, 5, 800–815.CrossRef Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. Transactions in Robotics, 5, 800–815.CrossRef
Zurück zum Zitat Williams B., Toussaint, M., & Storkey, A. (2007). Modelling motion primitives and their timing in biologically executed movements. In Advances in neural information processing systems (NIPS) (pp. 1609–1616). Williams B., Toussaint, M., & Storkey, A. (2007). Modelling motion primitives and their timing in biologically executed movements. In Advances in neural information processing systems (NIPS) (pp. 1609–1616).
Metadaten
Titel
Using probabilistic movement primitives in robotics
verfasst von
Alexandros Paraschos
Christian Daniel
Jan Peters
Gerhard Neumann
Publikationsdatum
15.07.2017
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 3/2018
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9648-7

Weitere Artikel der Ausgabe 3/2018

Autonomous Robots 3/2018 Zur Ausgabe

Neuer Inhalt