Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

19.10.2019

A meshless numerical wave tank for simulation of fully nonlinear wave–wave and wave–current interactions

verfasst von: Morteza Gholamipoor, Mahmoud Ghiasi

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A meshless method is proposed to simulate fully nonlinear wave–wave and wave–current interactions in the time domain. The fully nonlinear free surface motion is simulated using the local radial point interpolation collocation method (LRPICM), material node approach, and fourth-order Runge–Kutta method (RK4). LRPICM is a truly meshless method and efficient for moving-boundary problems. Potential theory is used to describe the fluid flow, and the Laplace equation is solved in the Eulerian frame using LRPICM at each time step. The material node approach and RK4 are used to update the free surface boundary conditions. A regridding algorithm based on radial basis function interpolation is used to update the free surface moving boundary in a stable and accurate manner. The incident waves are imposed by feeding determined analytical waves on the input boundary. An efficient artificial damping zone is placed on the free surface before the downstream wall boundary to absorb wave energy and avoid any reflection of the waves. The numerical solutions are compared with experimental data, theoretical results, and other available numerical simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ryu S, Kim MH, Lynett PJ (2003) Fully nonlinear wave–current interactions and kinematics by a BEM-based numerical wave tank. Comput Mech 32(4):336–346MATHCrossRef Ryu S, Kim MH, Lynett PJ (2003) Fully nonlinear wave–current interactions and kinematics by a BEM-based numerical wave tank. Comput Mech 32(4):336–346MATHCrossRef
2.
Zurück zum Zitat Takagi K (1991) An application of the rankine source method to the estimation of wave–current interaction effects. Appl Ocean Res 13(5):245–253CrossRef Takagi K (1991) An application of the rankine source method to the estimation of wave–current interaction effects. Appl Ocean Res 13(5):245–253CrossRef
3.
Zurück zum Zitat Isaacson M, Cheung KF (1993) Time-domain solution for wave–current interactions with a two-dimensional body. Appl Ocean Res 15(1):39–52CrossRef Isaacson M, Cheung KF (1993) Time-domain solution for wave–current interactions with a two-dimensional body. Appl Ocean Res 15(1):39–52CrossRef
4.
Zurück zum Zitat Kim DJ, Kim MH (1997) Wave-current-body interaction by a time-domain high-order boundary element method. Int J Offshore Polar Eng 3:107–115 ISOPE-I-97-272 Kim DJ, Kim MH (1997) Wave-current-body interaction by a time-domain high-order boundary element method. Int J Offshore Polar Eng 3:107–115 ISOPE-I-97-272
5.
6.
Zurück zum Zitat Hasanat Zaman M, Baddour E (2011) Interaction of waves with non-colinear currents. Ocean Eng 38(4):541–549CrossRef Hasanat Zaman M, Baddour E (2011) Interaction of waves with non-colinear currents. Ocean Eng 38(4):541–549CrossRef
7.
Zurück zum Zitat Finnegan W, Goggins J (2015) Linear irregular wave generation in a numerical wave tank. Appl Ocean Res 52:188–200CrossRef Finnegan W, Goggins J (2015) Linear irregular wave generation in a numerical wave tank. Appl Ocean Res 52:188–200CrossRef
8.
Zurück zum Zitat Silva MC, Vitola MA, Esperança P, Sphaier SH, Levi CA (2016) Numerical simulations of wave-current flow in an ocean basin. Appl Ocean Res 61:32–41CrossRef Silva MC, Vitola MA, Esperança P, Sphaier SH, Levi CA (2016) Numerical simulations of wave-current flow in an ocean basin. Appl Ocean Res 61:32–41CrossRef
9.
Zurück zum Zitat Li B (2008) A 3-D model based on Navier–Stokes equations for regular and irregular water wave propagation. Ocean Eng 35(17):1842–1853CrossRef Li B (2008) A 3-D model based on Navier–Stokes equations for regular and irregular water wave propagation. Ocean Eng 35(17):1842–1853CrossRef
10.
Zurück zum Zitat Kim SY, Kim KM, Park JC, Jeon GM, Chun HH (2016) Numerical simulation of wave and current interaction with a fixed offshore substructure. Int J Nav Archit Ocean Eng 8(2):188–197CrossRef Kim SY, Kim KM, Park JC, Jeon GM, Chun HH (2016) Numerical simulation of wave and current interaction with a fixed offshore substructure. Int J Nav Archit Ocean Eng 8(2):188–197CrossRef
11.
Zurück zum Zitat Zhang T, Ren YF, Yang ZQ, Fan CM, Li PW (2016) Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume. Ocean Eng 123:278–290CrossRef Zhang T, Ren YF, Yang ZQ, Fan CM, Li PW (2016) Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume. Ocean Eng 123:278–290CrossRef
12.
Zurück zum Zitat Abbasnia A, Guedes Soares C (2018) Fully nonlinear simulation of wave interaction with a cylindrical wave energy converter in a numerical wave tank. Ocean Eng 152:210–222CrossRef Abbasnia A, Guedes Soares C (2018) Fully nonlinear simulation of wave interaction with a cylindrical wave energy converter in a numerical wave tank. Ocean Eng 152:210–222CrossRef
13.
Zurück zum Zitat Wang CZ, Wu GX (2010) Interactions between fully nonlinear water waves and cylinder arrays in a wave tank. Ocean Eng 37(4):400–417CrossRef Wang CZ, Wu GX (2010) Interactions between fully nonlinear water waves and cylinder arrays in a wave tank. Ocean Eng 37(4):400–417CrossRef
14.
Zurück zum Zitat Zhang XT, Khoo BC, Lou J (2006) Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Eng 33(17–18):2310–2331CrossRef Zhang XT, Khoo BC, Lou J (2006) Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Eng 33(17–18):2310–2331CrossRef
15.
Zurück zum Zitat Celebi M (2001) Nonlinear transient wave–body interactions in steady uniform currents. Comput Methods Appl Mech Eng 190(39):5149–5172MATHCrossRef Celebi M (2001) Nonlinear transient wave–body interactions in steady uniform currents. Comput Methods Appl Mech Eng 190(39):5149–5172MATHCrossRef
16.
Zurück zum Zitat Abbasnia A, Guedes Soares C (2018) Fully nonlinear propagation of waves in a uniform current using NURBS numerical wave tank. Ocean Eng 163:115–125MATHCrossRef Abbasnia A, Guedes Soares C (2018) Fully nonlinear propagation of waves in a uniform current using NURBS numerical wave tank. Ocean Eng 163:115–125MATHCrossRef
17.
Zurück zum Zitat Wu NJ, Tsay TK, Young DL (2006) Meshless numerical simulation for fully nonlinear water waves. Int J Numer Methods Fluids 50(2):219–234MATHCrossRef Wu NJ, Tsay TK, Young DL (2006) Meshless numerical simulation for fully nonlinear water waves. Int J Numer Methods Fluids 50(2):219–234MATHCrossRef
18.
Zurück zum Zitat Wu NJ, Tsay TK (2008) Applicability of the method of fundamental solutions to 3-D wave-body interaction with fully nonlinear free surface. J Eng Math 63(1):61MathSciNetMATHCrossRef Wu NJ, Tsay TK (2008) Applicability of the method of fundamental solutions to 3-D wave-body interaction with fully nonlinear free surface. J Eng Math 63(1):61MathSciNetMATHCrossRef
19.
Zurück zum Zitat Xiao L-F, Yang J-M, Peng T, Li J (2009) A meshless numerical wave tank for simulation of nonlinear irregular waves in shallow water. Int J Numer Methods Fluids 61(2):165–184MathSciNetMATHCrossRef Xiao L-F, Yang J-M, Peng T, Li J (2009) A meshless numerical wave tank for simulation of nonlinear irregular waves in shallow water. Int J Numer Methods Fluids 61(2):165–184MathSciNetMATHCrossRef
20.
Zurück zum Zitat Xiao L, Yang J, Peng T, Tao L (2016) A free surface interpolation approach for rapid simulation of short waves in meshless numerical wave tank based on the radial basis function. J Comput Phys 307:203–224MathSciNetMATHCrossRef Xiao L, Yang J, Peng T, Tao L (2016) A free surface interpolation approach for rapid simulation of short waves in meshless numerical wave tank based on the radial basis function. J Comput Phys 307:203–224MathSciNetMATHCrossRef
21.
Zurück zum Zitat Fan CM, Chu CN, Šarler B, Li TH (2018) Numerical solutions of waves-current interactions by generalized finite difference method. Eng Anal Bound Elem 100:150–163MathSciNetMATHCrossRef Fan CM, Chu CN, Šarler B, Li TH (2018) Numerical solutions of waves-current interactions by generalized finite difference method. Eng Anal Bound Elem 100:150–163MathSciNetMATHCrossRef
22.
Zurück zum Zitat Senturk U (2011) Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method. Comput Fluids 44(1):221–228MathSciNetMATHCrossRef Senturk U (2011) Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method. Comput Fluids 44(1):221–228MathSciNetMATHCrossRef
23.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19(8):127–145MathSciNetMATHCrossRef Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19(8):127–145MathSciNetMATHCrossRef
24.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8):147–161MathSciNetMATHCrossRef Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8):147–161MathSciNetMATHCrossRef
25.
Zurück zum Zitat Waters J, Pepper DW (2015) Global versus localized RBF meshless methods for solving incompressible fluid flow with heat transfer. Numer Heat Trans B 68(3):185–203CrossRef Waters J, Pepper DW (2015) Global versus localized RBF meshless methods for solving incompressible fluid flow with heat transfer. Numer Heat Trans B 68(3):185–203CrossRef
26.
Zurück zum Zitat Ma J, Wei G, Liu D, Liu G (2017) The numerical analysis of piezoelectric ceramics based on the Hermite-type RPIM. Appl Math Comput 309:170–182MathSciNetMATH Ma J, Wei G, Liu D, Liu G (2017) The numerical analysis of piezoelectric ceramics based on the Hermite-type RPIM. Appl Math Comput 309:170–182MathSciNetMATH
27.
Zurück zum Zitat Kosec G, Sarler B (2008) Local RBF collocation method for Darcy flow. Comput Model Eng Sci 25(3):197–208 Kosec G, Sarler B (2008) Local RBF collocation method for Darcy flow. Comput Model Eng Sci 25(3):197–208
28.
Zurück zum Zitat Tanizawa K, ed (2000) The state of the art on numerical wave tank. In: Proceedings of the 4th Osaka colloquium on seakeeping performance of ships, Paper: P2000-11 Proceedings Tanizawa K, ed (2000) The state of the art on numerical wave tank. In: Proceedings of the 4th Osaka colloquium on seakeeping performance of ships, Paper: P2000-11 Proceedings
29.
Zurück zum Zitat Dehghan M, Haghjoo-Saniji M (2017) The local radial point interpolation meshless method for solving Maxwell equations. Eng Comput 33(4):897–918CrossRef Dehghan M, Haghjoo-Saniji M (2017) The local radial point interpolation meshless method for solving Maxwell equations. Eng Comput 33(4):897–918CrossRef
30.
Zurück zum Zitat Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36(6):421–430MathSciNetMATHCrossRef Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36(6):421–430MathSciNetMATHCrossRef
31.
Zurück zum Zitat Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin
32.
Zurück zum Zitat Lin H-X, Ning DZ, Zou QP, Teng B, Chen LF (2014) Current effects on nonlinear wave scattering by a submerged plate. J Waterw Port Coast Ocean Eng 140(5):04014016CrossRef Lin H-X, Ning DZ, Zou QP, Teng B, Chen LF (2014) Current effects on nonlinear wave scattering by a submerged plate. J Waterw Port Coast Ocean Eng 140(5):04014016CrossRef
Metadaten
Titel
A meshless numerical wave tank for simulation of fully nonlinear wave–wave and wave–current interactions
verfasst von
Morteza Gholamipoor
Mahmoud Ghiasi
Publikationsdatum
19.10.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-10021-x

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.