Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2013

01.07.2013

A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method

verfasst von: A. Fereidoon, R. Rafiee, R. Maleki Moghadam

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A modal analysis of a carbon-nanotube-reinforced polymer (CNTRP) is performed using a 3D finite-element model. A multiscale finite-element model consisting of a single-walled carbon nanotube, a nonbonded interphase region, and the surrounding polymer is constructed. The modal analysis is executed with two types of boundary conditions to obtain the natural frequencies of the CNTRP, and the frequencies obtained are compared with the natural frequencies of a neat polymer. The results show a considerable growth in the natural frequencies of reinforced composites doped even with a small portion of carbon nanotubes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 568 (1991).CrossRef S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 568 (1991).CrossRef
2.
Zurück zum Zitat M. M. Shokrieh and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., 46, No. 2, 155–172 (2010).CrossRef M. M. Shokrieh and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., 46, No. 2, 155–172 (2010).CrossRef
3.
Zurück zum Zitat A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, “Vibrational analysis of single-walled carbon nanotubes using beam element,” Thin-Wall Struct., 47, 646–652 (2009).CrossRef A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, “Vibrational analysis of single-walled carbon nanotubes using beam element,” Thin-Wall Struct., 47, 646–652 (2009).CrossRef
4.
Zurück zum Zitat C. Li and T.-W. Chou, “Vibrational behaviors of multiwalled-carbonnanotube- based nanomechanical resonators,” Appl. Phys. Lett., 84, No. 1, 121–123 (2004).CrossRef C. Li and T.-W. Chou, “Vibrational behaviors of multiwalled-carbonnanotube- based nanomechanical resonators,” Appl. Phys. Lett., 84, No. 1, 121–123 (2004).CrossRef
5.
Zurück zum Zitat D. Sanchez-Portal, E. J. Artacho, and J. M. Soler, “Ab’initio structural, elastic, and vibrational properties of carbon nanotubes,” Phys. Rev. B, 59, No. 19, 12678–12688 (1999).CrossRef D. Sanchez-Portal, E. J. Artacho, and J. M. Soler, “Ab’initio structural, elastic, and vibrational properties of carbon nanotubes,” Phys. Rev. B, 59, No. 19, 12678–12688 (1999).CrossRef
6.
Zurück zum Zitat C. Q. Ru, “Intrinsic vibration of multiwalled carbon nanotubes,” Int. J. Nonlinear Sci. Numer. Simul., 3, Nos. 3–4, 735 (2002). C. Q. Ru, “Intrinsic vibration of multiwalled carbon nanotubes,” Int. J. Nonlinear Sci. Numer. Simul., 3, Nos. 3–4, 735 (2002).
7.
Zurück zum Zitat Y. Zhang, G. Liu, and X. Han, “Transverse vibrations of double-walled carbon nanotubes under compressive axial load,” Phys. Lett. A, 340, 258–266 (2005).CrossRef Y. Zhang, G. Liu, and X. Han, “Transverse vibrations of double-walled carbon nanotubes under compressive axial load,” Phys. Lett. A, 340, 258–266 (2005).CrossRef
8.
Zurück zum Zitat G. Dereli and C. Ozdogan, “Structural stability and energetics of singlewalled carbon nanotubes under uniaxial strain,” Phys. Rev. B, 67, No. 3, 035416 (2003).CrossRef G. Dereli and C. Ozdogan, “Structural stability and energetics of singlewalled carbon nanotubes under uniaxial strain,” Phys. Rev. B, 67, No. 3, 035416 (2003).CrossRef
9.
Zurück zum Zitat G. D. Mahan, “Oscillations of a thin hollow cylinder: carbon nanotubes,” Phys. Rev. B, ; 65, 235402 (2002). G. D. Mahan, “Oscillations of a thin hollow cylinder: carbon nanotubes,” Phys. Rev. B, ; 65, 235402 (2002).
10.
Zurück zum Zitat C. Li and T.-W. Chou, “Single-walled nanotubes as ultrahigh frequency nanomechanical resonators,” Phys. Rev. B, 68, 073405 (2003).CrossRef C. Li and T.-W. Chou, “Single-walled nanotubes as ultrahigh frequency nanomechanical resonators,” Phys. Rev. B, 68, 073405 (2003).CrossRef
11.
Zurück zum Zitat R. F. Gibson, E. O. Ayorinde, and Y. F. Wen, “Vibrations of carbon nanotubes and their composites: A review,” Compos. Sci. Technol., 67, 1–28 (2007).CrossRef R. F. Gibson, E. O. Ayorinde, and Y. F. Wen, “Vibrations of carbon nanotubes and their composites: A review,” Compos. Sci. Technol., 67, 1–28 (2007).CrossRef
12.
Zurück zum Zitat A. F. Ávila, L. V. Donadon, H. V. Duarte, “Modal analysis on nanoclay epoxy-based fiber-glass laminates,” Compos. Struct., 83, No. 3, 324–333 (2008).CrossRef A. F. Ávila, L. V. Donadon, H. V. Duarte, “Modal analysis on nanoclay epoxy-based fiber-glass laminates,” Compos. Struct., 83, No. 3, 324–333 (2008).CrossRef
13.
Zurück zum Zitat G. Formica, W. Lacarbonara, and R. Alessi, “Vibrations of carbon nanotube-reinforced composites,” J. Sound Vibrat., 329, 1875–1889 (2010).CrossRef G. Formica, W. Lacarbonara, and R. Alessi, “Vibrations of carbon nanotube-reinforced composites,” J. Sound Vibrat., 329, 1875–1889 (2010).CrossRef
14.
Zurück zum Zitat M. M. Shokrieh and R. Rafiee, “Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber,” Mech. Res. Commun., 37, 235–240, (2010).CrossRef M. M. Shokrieh and R. Rafiee, “Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber,” Mech. Res. Commun., 37, 235–240, (2010).CrossRef
15.
Zurück zum Zitat C. Li and T. W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solids Struct., 40, 2487–2499 (2003).CrossRef C. Li and T. W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solids Struct., 40, 2487–2499 (2003).CrossRef
16.
Zurück zum Zitat K. I. Tserpes and P. Papanikos, “Finite-element modeling of single-walled carbon nanotubes,” Compos. Part B, Eng., 36, 468–477 (2005). K. I. Tserpes and P. Papanikos, “Finite-element modeling of single-walled carbon nanotubes,” Compos. Part B, Eng., 36, 468–477 (2005).
17.
Zurück zum Zitat A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, and M. N. Ghasemi-Nejhad, “Analytical and numerical techniques to predict carbon nanotubes properties,” Int. J. Solids Struct., 43, 6832–6854 (2006).CrossRef A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, and M. N. Ghasemi-Nejhad, “Analytical and numerical techniques to predict carbon nanotubes properties,” Int. J. Solids Struct., 43, 6832–6854 (2006).CrossRef
18.
Zurück zum Zitat C. W. S. To, “Bending and shear moduli of single-walled carbon nanotubes,” Finite Element Anal. Des., 42, 404–413 (2006).CrossRef C. W. S. To, “Bending and shear moduli of single-walled carbon nanotubes,” Finite Element Anal. Des., 42, 404–413 (2006).CrossRef
19.
20.
Zurück zum Zitat ANSYS Inc. Theory manual. SAS IP Inc. 2009. ANSYS Inc. Theory manual. SAS IP Inc. 2009.
21.
Zurück zum Zitat S. B. Sinnott, “Chemical functionalization of carbon nanotubes,” J. Nanosci. Nanotechnol., 2, 113–123 (2002).CrossRef S. B. Sinnott, “Chemical functionalization of carbon nanotubes,” J. Nanosci. Nanotechnol., 2, 113–123 (2002).CrossRef
22.
Zurück zum Zitat J. L. Bahr and J. M. Tour, “Covalent chemistry of single-wall carbon nanotubes,” J. Mater. Chem., 12, 1952–1958 (2002).CrossRef J. L. Bahr and J. M. Tour, “Covalent chemistry of single-wall carbon nanotubes,” J. Mater. Chem., 12, 1952–1958 (2002).CrossRef
23.
Zurück zum Zitat S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, “Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces,” J. Phys. Chem., B, 106, 3046–3048 (2002).CrossRef S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel, “Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces,” J. Phys. Chem., B, 106, 3046–3048 (2002).CrossRef
24.
Zurück zum Zitat M. L. Shofner, V. N. Khabashesku, and E. V. Barrera, “Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites,” Chem. Mater., 18, 906–913 (2006).CrossRef M. L. Shofner, V. N. Khabashesku, and E. V. Barrera, “Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites,” Chem. Mater., 18, 906–913 (2006).CrossRef
25.
Zurück zum Zitat F. Buffa, G. A. Abraham, B. P. Grady, and D. Resasco, “Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites,” J. Polym. Sci. Part B. Polym. Phys., 45, 490–501 (2007).CrossRef F. Buffa, G. A. Abraham, B. P. Grady, and D. Resasco, “Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites,” J. Polym. Sci. Part B. Polym. Phys., 45, 490–501 (2007).CrossRef
26.
Zurück zum Zitat C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, “Detachment of nanotubes from a polymer matrix,” Appl. Phys. Lett., 81, No. 20, 3873–3875 (2002).CrossRef C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, “Detachment of nanotubes from a polymer matrix,” Appl. Phys. Lett., 81, No. 20, 3873–3875 (2002).CrossRef
27.
Zurück zum Zitat A. H. Barber, S. R. Cohen, H. D. Wagner, “Measurement of carbon nanotube-polymer interfacial strength,” Appl. Phys. Lett., 82, No. 23, 4140–4142 (2003).CrossRef A. H. Barber, S. R. Cohen, H. D. Wagner, “Measurement of carbon nanotube-polymer interfacial strength,” Appl. Phys. Lett., 82, No. 23, 4140–4142 (2003).CrossRef
28.
Zurück zum Zitat V. Lordi and N. Yao, “Molecular mechanics of binding in carbon-nanotube– polymer composites,” J. Mater. Res., 15, No. 12, 2770–2779 (2000).CrossRef V. Lordi and N. Yao, “Molecular mechanics of binding in carbon-nanotube– polymer composites,” J. Mater. Res., 15, No. 12, 2770–2779 (2000).CrossRef
30.
Zurück zum Zitat H. Wan, F. Delale, and L. Shen, “Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites,” Mech. Res. Commun., 32, 481–489 (2005).CrossRef H. Wan, F. Delale, and L. Shen, “Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites,” Mech. Res. Commun., 32, 481–489 (2005).CrossRef
31.
Zurück zum Zitat M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, “Multiscale modeling of mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading,” Compos. Struct., 93, 2250–2259 (2011).CrossRef M. R. Ayatollahi, S. Shadlou, and M. M. Shokrieh, “Multiscale modeling of mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading,” Compos. Struct., 93, 2250–2259 (2011).CrossRef
32.
Zurück zum Zitat A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, „Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix,” Compos. Sci. Technol., 64, 2283–2289 (2004). A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, „Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix,” Compos. Sci. Technol., 64, 2283–2289 (2004).
33.
Zurück zum Zitat F. Karimzadeh, S. Ziaei-Rad, and S. Adibi, “Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite,” Metall. Mater. Trans. B, 38, 695–705 (2007).CrossRef F. Karimzadeh, S. Ziaei-Rad, and S. Adibi, “Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite,” Metall. Mater. Trans. B, 38, 695–705 (2007).CrossRef
34.
Zurück zum Zitat C. Li and T. W. Chou, “Multiscale modeling of carbon nanotube reinforced polymer composites,” J. of Nanosci. Nanotechnol., 3, 423–430 (2003).CrossRef C. Li and T. W. Chou, “Multiscale modeling of carbon nanotube reinforced polymer composites,” J. of Nanosci. Nanotechnol., 3, 423–430 (2003).CrossRef
35.
Zurück zum Zitat C. Li and T. W. Chou, “Multiscale modeling of compressive behavior of carbon nanotube/polymer composites,” Compos. Sci. Technol., 66, 2409–2414 (2006).CrossRef C. Li and T. W. Chou, “Multiscale modeling of compressive behavior of carbon nanotube/polymer composites,” Compos. Sci. Technol., 66, 2409–2414 (2006).CrossRef
36.
Zurück zum Zitat S. K. Georgantzinos, G. I. Giannopoulos, and N. K. Anifantis, “Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method,” Theor. Appl. Fract. Mech., 158–164 (2009). S. K. Georgantzinos, G. I. Giannopoulos, and N. K. Anifantis, “Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method,” Theor. Appl. Fract. Mech., 158–164 (2009).
37.
Zurück zum Zitat G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis, “A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites,” Compos. Part B, 41, No. 8, 594–601 (2010).CrossRef G. I. Giannopoulos, S. K. Georgantzinos, and N. K. Anifantis, “A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites,” Compos. Part B, 41, No. 8, 594–601 (2010).CrossRef
38.
Zurück zum Zitat J. M. Wernik and S. A. Meguid, “Multiscale modeling of the nonlinear response of nano-reinforced polymers,” Acta Mech., 217, 1–16 (2011).CrossRef J. M. Wernik and S. A. Meguid, “Multiscale modeling of the nonlinear response of nano-reinforced polymers,” Acta Mech., 217, 1–16 (2011).CrossRef
39.
Zurück zum Zitat L. Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K. C. Hwang, and B. Liu, “A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force,” J. Mech. Phys. Solids, 54, 2436–2452 (2006).CrossRef L. Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K. C. Hwang, and B. Liu, “A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force,” J. Mech. Phys. Solids, 54, 2436–2452 (2006).CrossRef
40.
Zurück zum Zitat E. Madenci and I. Guven, “The finite element method and applications in engineering using ANSYS,” Springer, Library of Congress Control Number: 2005052017 E. Madenci and I. Guven, “The finite element method and applications in engineering using ANSYS,” Springer, Library of Congress Control Number: 2005052017
Metadaten
Titel
A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method
verfasst von
A. Fereidoon
R. Rafiee
R. Maleki Moghadam
Publikationsdatum
01.07.2013
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2013
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-013-9350-6

Weitere Artikel der Ausgabe 3/2013

Mechanics of Composite Materials 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.