Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 13/2012

01.12.2012

A Model for Predicting the Yield Strength Difference between Pipe and Plate of Low-Carbon Microalloyed Steel

verfasst von: Wenlong Zhang, Dongyan Ding, Mingyuan Gu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 13/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A combination of finite-element calculation and tension-compression tests was employed to predict the yield strength difference between the pipe and plate of low-carbon microalloyed steel (LCMS) in the production of high-frequency straight bead welding pipes (HFSBWPs). The deformation process was divided into bending, flattening, and tension deformations. The bending and flattening deformations were simulated using a finite-element method in order to obtain circumferential strains at pipe wall positions along the wall thickness. These strains were the transition strains in the subsequent tension-compression-tension and compression-tension tests. The yield stresses (0.5 pct proof stresses) at the pipe wall positions were derived from the obtained stress–strain curves. The average of the obtained yield stresses was taken as the predicted yield strength of the pipes. It is found that the difference between the latter and the strength of the original steel plates is a result of the combined action of the Bauschinger effect and strain hardening caused by bending and reverse bending deformations. It is strongly dependent on the ratio of pipe wall thickness to pipe outer diameter (T/D ratio). At low T/D ratios, the Bauschinger effect was dominant, resulting in a decreased yield strength. Strain hardening due to work hardening was dominant at higher T/D ratios, resulting in an increased yield strength. The increase in yield strength was greater at the inner pipe walls than at outer ones, indicating that strain hardening is stronger at inner pipe walls. The yield strength differences predicted with the presented approach are comparable with the values obtained from industrial productions of HFSBWPs, indicating that this approach can be used to predict the yield strength difference between pipe and plate of LCMS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.Y. Yin: OGST, 2002, vol. 21, pp. 43-6. G.Y. Yin: OGST, 2002, vol. 21, pp. 43-6.
3.
Zurück zum Zitat R.C. Ratnapuli and E.C. Rodrigues: Metall. Technol., 1982, vol. 9, pp. 440-5. R.C. Ratnapuli and E.C. Rodrigues: Metall. Technol., 1982, vol. 9, pp. 440-5.
4.
Zurück zum Zitat A. Streisselberger, J. Bauer, B. Bergmann, and W. Shutz: Paper presented at Proc. Int. Conf. on Pipeline Reliability, CANMET, Toronto, Canada, 1992. A. Streisselberger, J. Bauer, B. Bergmann, and W. Shutz: Paper presented at Proc. Int. Conf. on Pipeline Reliability, CANMET, Toronto, Canada, 1992.
5.
Zurück zum Zitat G. Kostryzhev, M. Strangwood, and C.L Davis: Mater. Manuf. Process., 2010, vol. 25, pp. 41-7.CrossRef G. Kostryzhev, M. Strangwood, and C.L Davis: Mater. Manuf. Process., 2010, vol. 25, pp. 41-7.CrossRef
6.
Zurück zum Zitat A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Ironmaking Steelmaking, 2009, vol. 36, pp. 186-92.CrossRef A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Ironmaking Steelmaking, 2009, vol. 36, pp. 186-92.CrossRef
7.
Zurück zum Zitat B.M. Grainger, M.T. Jones, M.R. Lovell, T.M. Link, H.R. Pichler, R.D. Marangoni, and D. Roy: Steel Res. Int., 2008, vol. 28, pp. 347-55. B.M. Grainger, M.T. Jones, M.R. Lovell, T.M. Link, H.R. Pichler, R.D. Marangoni, and D. Roy: Steel Res. Int., 2008, vol. 28, pp. 347-55.
8.
Zurück zum Zitat T.C. Harrison, R.T. Weiner, and G.D. Fearnehough: J. Iron Steel Inst., 1972, vol. 210, pp. 334-6. T.C. Harrison, R.T. Weiner, and G.D. Fearnehough: J. Iron Steel Inst., 1972, vol. 210, pp. 334-6.
9.
Zurück zum Zitat J.P. Ormandy, M. Strangwood, and C.L. Davis: Mater. Sci. Tech., 2003, vol. 19, pp. 595–601.CrossRef J.P. Ormandy, M. Strangwood, and C.L. Davis: Mater. Sci. Tech., 2003, vol. 19, pp. 595–601.CrossRef
10.
Zurück zum Zitat A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1399–1408.CrossRef A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1399–1408.CrossRef
11.
Zurück zum Zitat A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3170–77.CrossRef A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3170–77.CrossRef
12.
Zurück zum Zitat J.B. Wiskel, M. Rieder, and H. Henein: Can. Metall. Q., 2004, vol. 43, pp. 125-36.CrossRef J.B. Wiskel, M. Rieder, and H. Henein: Can. Metall. Q., 2004, vol. 43, pp. 125-36.CrossRef
13.
Zurück zum Zitat L.K. Ji: OGST, 2004, vol. 23, pp. 33-55. L.K. Ji: OGST, 2004, vol. 23, pp. 33-55.
14.
Zurück zum Zitat S.S. Yun and Y.W. Chang: Mater. Sci. Forum, 2005, vols. 475–479, pp. 4103-8.CrossRef S.S. Yun and Y.W. Chang: Mater. Sci. Forum, 2005, vols. 475–479, pp. 4103-8.CrossRef
15.
Zurück zum Zitat A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Mater. Technol., 2007, vol. 22, pp. 166-72. A.G. Kostryzhev, M. Strangwood, and C.L. Davis: Mater. Technol., 2007, vol. 22, pp. 166-72.
17.
Zurück zum Zitat R.J. Arsenault and S.B. Wu: Mater. Sci. Eng. A, 1987, vol. 96A, pp. 77-88.CrossRef R.J. Arsenault and S.B. Wu: Mater. Sci. Eng. A, 1987, vol. 96A, pp. 77-88.CrossRef
18.
Zurück zum Zitat R.R. de Swardt: J. Press. Vess-Trans. ASME, 2006, vol. 128, pp. 190-5.CrossRef R.R. de Swardt: J. Press. Vess-Trans. ASME, 2006, vol. 128, pp. 190-5.CrossRef
19.
Zurück zum Zitat M. Abdel-Karim and N. Ohno: Int. J. Plasticity, 2000, vol. 16, pp. 225-40.CrossRef M. Abdel-Karim and N. Ohno: Int. J. Plasticity, 2000, vol. 16, pp. 225-40.CrossRef
20.
Zurück zum Zitat G. Kang, Q. Gao, and X. Yang: Mech. Mater., 2002, vol. 34, pp. 521-31.CrossRef G. Kang, Q. Gao, and X. Yang: Mech. Mater., 2002, vol. 34, pp. 521-31.CrossRef
21.
22.
Zurück zum Zitat L. Taleb and G. Cailletaud: Int. J. Plasticity, 2010, vol. 26, pp. 859-74.CrossRef L. Taleb and G. Cailletaud: Int. J. Plasticity, 2010, vol. 26, pp. 859-74.CrossRef
23.
Zurück zum Zitat G. Cailletaud and K. Sai: Int. J. Plasticity, 1995, vol. 11, pp. 991–1005.CrossRef G. Cailletaud and K. Sai: Int. J. Plasticity, 1995, vol. 11, pp. 991–1005.CrossRef
24.
Zurück zum Zitat K. Sai and G. Cailletaud: Int. J. Plasticity, 2007, vol. 23, pp. 1589-617.CrossRef K. Sai and G. Cailletaud: Int. J. Plasticity, 2007, vol. 23, pp. 1589-617.CrossRef
25.
Zurück zum Zitat M. Wolff and L. Taleb: Int. J. Plasticity, 2008, vol. 24, pp. 2059-83.CrossRef M. Wolff and L. Taleb: Int. J. Plasticity, 2008, vol. 24, pp. 2059-83.CrossRef
26.
27.
Zurück zum Zitat Y.Y. Jiang and J. X. Zhang: Int. J. Plasticity, 2008, vol. 24, pp. 1481-515.CrossRef Y.Y. Jiang and J. X. Zhang: Int. J. Plasticity, 2008, vol. 24, pp. 1481-515.CrossRef
28.
Zurück zum Zitat T. Hassan, L. Taleb, and S. Krishna: Int. J. Plasticity, 2008, vol. 24, pp. 1863-89.CrossRef T. Hassan, L. Taleb, and S. Krishna: Int. J. Plasticity, 2008, vol. 24, pp. 1863-89.CrossRef
29.
Zurück zum Zitat C. Simsir, M. Dalgic, T. Lubben, A. Irretier, M. Wolff, and H.W. Zoch: Acta Mater., 2010, vol. 58, pp. 4478-91.CrossRef C. Simsir, M. Dalgic, T. Lubben, A. Irretier, M. Wolff, and H.W. Zoch: Acta Mater., 2010, vol. 58, pp. 4478-91.CrossRef
30.
Zurück zum Zitat J.W. Lee, M.G. Lee, and F. Barlat: Int. J. Plasticity, 2012, vol. 29, pp. 13-41.CrossRef J.W. Lee, M.G. Lee, and F. Barlat: Int. J. Plasticity, 2012, vol. 29, pp. 13-41.CrossRef
31.
Zurück zum Zitat J.H. Kim, D. Kim, F. Barlat, and M.G. Lee: Mater. Sci. Eng. A, 2012, vol. 539, pp. 259-70.CrossRef J.H. Kim, D. Kim, F. Barlat, and M.G. Lee: Mater. Sci. Eng. A, 2012, vol. 539, pp. 259-70.CrossRef
32.
Zurück zum Zitat L. Madej, K. Muszka, K. Perzynski, J. Majta, and M. Pietrzyk: CIRP Annals—Manufact. Technol., 2011, vol. 60, pp. 291-4.CrossRef L. Madej, K. Muszka, K. Perzynski, J. Majta, and M. Pietrzyk: CIRP Annals—Manufact. Technol., 2011, vol. 60, pp. 291-4.CrossRef
Metadaten
Titel
A Model for Predicting the Yield Strength Difference between Pipe and Plate of Low-Carbon Microalloyed Steel
verfasst von
Wenlong Zhang
Dongyan Ding
Mingyuan Gu
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 13/2012
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1336-9

Weitere Artikel der Ausgabe 13/2012

Metallurgical and Materials Transactions A 13/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.