Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2020

17.02.2020 | Research Paper

A multi-fidelity surrogate model based on support vector regression

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational simulations with different fidelities have been widely used in engineering design and optimization. A high-fidelity (HF) model is generally more accurate but also more time-consuming than the corresponding low-fidelity (LF) model. To take advantage of both HF and LF models, a number of multi-fidelity surrogate (MFS) models based on different surrogate models (e.g., Kriging, response surface, and radial basis function) have been developed, but MFS models based on support vector regression are rarely reported. In this paper, a new MFS model based on support vector regression, which is named Co_SVR, is developed. In the proposed method, the HF and LF samples are mapped into a high-dimensional feature space through a kernel function, and then, a linear model is utilized to evaluate the relationship between inputs and outputs. The root mean square error (RMSE) of HF responses of interest is used to express the training error of Co_SVR, and a heuristic algorithm, grey wolf optimizer, is used to obtain the optimal parameters. For verification, the Co_SVR model is compared with four popular multi-fidelity surrogate models and four single-fidelity surrogate models through a number of numerical cases and a pressure relief valve design problem. The results show that Co_SVR provides competitive performance in both numerical cases and the practical case. Moreover, the effects of key factors (i.e., the correlation between HF and LF models, the cost ratio of HF to LF models, and the combination of HF and LF samples) on the performance of Co_SVR are also explored.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andrés E, Salcedo-Sanz S, Monge F, Pérez-Bellido AM (2012) Efficient aerodynamic design through evolutionary programming and support vector regression algorithms. Expert Syst Appl 39(12):10700–10708CrossRef Andrés E, Salcedo-Sanz S, Monge F, Pérez-Bellido AM (2012) Efficient aerodynamic design through evolutionary programming and support vector regression algorithms. Expert Syst Appl 39(12):10700–10708CrossRef
Zurück zum Zitat Aute V, Saleh K, Abdelaziz O, Azarm S, Radermacher R (2013) Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations. Struct Multidiscip Optim 48(3):581–605CrossRef Aute V, Saleh K, Abdelaziz O, Azarm S, Radermacher R (2013) Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations. Struct Multidiscip Optim 48(3):581–605CrossRef
Zurück zum Zitat Bertram A, Zimmermann R (2018) Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling. Adv Comput Math 44(6):1693–1716MathSciNetMATHCrossRef Bertram A, Zimmermann R (2018) Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling. Adv Comput Math 44(6):1693–1716MathSciNetMATHCrossRef
Zurück zum Zitat Cai X, Qiu H, Gao L, Shao X (2017) Metamodeling for high dimensional design problems by multi-fidelity simulations. Struct Multidiscip Optim 56(1):151–166MathSciNetCrossRef Cai X, Qiu H, Gao L, Shao X (2017) Metamodeling for high dimensional design problems by multi-fidelity simulations. Struct Multidiscip Optim 56(1):151–166MathSciNetCrossRef
Zurück zum Zitat Chakraborty S, Chatterjee T, Chowdhury R, Adhikari S (2017) A surrogate based multi-fidelity approach for robust design optimization. Appl Math Model 47:726–744MathSciNetMATHCrossRef Chakraborty S, Chatterjee T, Chowdhury R, Adhikari S (2017) A surrogate based multi-fidelity approach for robust design optimization. Appl Math Model 47:726–744MathSciNetMATHCrossRef
Zurück zum Zitat Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27 Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27
Zurück zum Zitat Che Y, Liu J, Cheng C (2019) Multi-fidelity modeling in sequential design for stability identification in dynamic time-delay systems. Chaos: Interdiscip J Nonlinear Sci 29(9):093105MathSciNetCrossRef Che Y, Liu J, Cheng C (2019) Multi-fidelity modeling in sequential design for stability identification in dynamic time-delay systems. Chaos: Interdiscip J Nonlinear Sci 29(9):093105MathSciNetCrossRef
Zurück zum Zitat Cheng K, Lu Z, Zhen Y (2019) Multi-level multi-fidelity sparse polynomial chaos expansion based on Gaussian process regression. Comput Methods Appl Mech Eng 349:360–377MathSciNetMATHCrossRef Cheng K, Lu Z, Zhen Y (2019) Multi-level multi-fidelity sparse polynomial chaos expansion based on Gaussian process regression. Comput Methods Appl Mech Eng 349:360–377MathSciNetMATHCrossRef
Zurück zum Zitat Cutajar K, Pullin M, Damianou A, Lawrence N, González J (2019) Deep Gaussian processes for multi-fidelity modeling. arXiv preprint arXiv:1903.07320 Cutajar K, Pullin M, Damianou A, Lawrence N, González J (2019) Deep Gaussian processes for multi-fidelity modeling. arXiv preprint arXiv:1903.07320
Zurück zum Zitat Durantin C, Rouxel J, Désidéri JA, Glière A (2017) Multifidelity surrogate modeling based on radial basis functions. Struct Multidiscip Optim 56(5):1061–1075CrossRef Durantin C, Rouxel J, Désidéri JA, Glière A (2017) Multifidelity surrogate modeling based on radial basis functions. Struct Multidiscip Optim 56(5):1061–1075CrossRef
Zurück zum Zitat Fernández-Godino MG, Dubreuil S, Bartoli N, Gogu C, Balachandar S, Haftka RT (2019) Linear regression based multi-fidelity surrogate for disturbance amplification in multi-phase explosion. Struct Multidiscip Optim 60(6):2205–2220 Fernández-Godino MG, Dubreuil S, Bartoli N, Gogu C, Balachandar S, Haftka RT (2019) Linear regression based multi-fidelity surrogate for disturbance amplification in multi-phase explosion. Struct Multidiscip Optim 60(6):2205–2220
Zurück zum Zitat Forrester AIJ, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Math Phys Eng Sci 463(2088):3251–3269MathSciNetMATHCrossRef Forrester AIJ, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc Math Phys Eng Sci 463(2088):3251–3269MathSciNetMATHCrossRef
Zurück zum Zitat Ghosh S, Kristensen J, Zhang Y, Subber W, Wang L (2019) A strategy for adaptive sampling of multi-fidelity Gaussian process to reduce predictive uncertainty. arXiv preprint arXiv:1907.11739 Ghosh S, Kristensen J, Zhang Y, Subber W, Wang L (2019) A strategy for adaptive sampling of multi-fidelity Gaussian process to reduce predictive uncertainty. arXiv preprint arXiv:1907.11739
Zurück zum Zitat Han Z, Zimmerman R, Görtz S (2012) Alternative coKriging method for variable-fidelity surrogate modeling. AIAA J 50(5):1205–1210CrossRef Han Z, Zimmerman R, Görtz S (2012) Alternative coKriging method for variable-fidelity surrogate modeling. AIAA J 50(5):1205–1210CrossRef
Zurück zum Zitat Jacobs JP, Koziel S, Ogurtsov S (2012) Computationally efficient multi-fidelity Bayesian support vector regression modeling of planar antenna input characteristics. IEEE Trans Antennas Propag 61(2):980–984MathSciNetMATHCrossRef Jacobs JP, Koziel S, Ogurtsov S (2012) Computationally efficient multi-fidelity Bayesian support vector regression modeling of planar antenna input characteristics. IEEE Trans Antennas Propag 61(2):980–984MathSciNetMATHCrossRef
Zurück zum Zitat Kennedy MC, O'Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13MathSciNetMATHCrossRef Kennedy MC, O'Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13MathSciNetMATHCrossRef
Zurück zum Zitat Leifsson L, Koziel S (2010) Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction. J Comput Sci 1(2):98–106CrossRef Leifsson L, Koziel S (2010) Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction. J Comput Sci 1(2):98–106CrossRef
Zurück zum Zitat Li X, Gao W, Gu L, Gong C, Jing Z, Su H (2017) A cooperative radial basis function method for variable-fidelity surrogate modeling. Struct Multidiscip Optim 56(5):1077–1092CrossRef Li X, Gao W, Gu L, Gong C, Jing Z, Su H (2017) A cooperative radial basis function method for variable-fidelity surrogate modeling. Struct Multidiscip Optim 56(5):1077–1092CrossRef
Zurück zum Zitat Liu B, Koziel S, Zhang Q (2016) A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems. J Comput Sci 12:28–37MathSciNetCrossRef Liu B, Koziel S, Zhang Q (2016) A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems. J Comput Sci 12:28–37MathSciNetCrossRef
Zurück zum Zitat Liu H, Ong YS, Cai J, Wang Y (2018) Cope with diverse data structures in multi-fidelity modeling: a Gaussian process method. Eng Appl Artif Intell 67:211–225CrossRef Liu H, Ong YS, Cai J, Wang Y (2018) Cope with diverse data structures in multi-fidelity modeling: a Gaussian process method. Eng Appl Artif Intell 67:211–225CrossRef
Zurück zum Zitat Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266CrossRef Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266CrossRef
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRef
Zurück zum Zitat Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. J Wiley Sons Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. J Wiley Sons
Zurück zum Zitat Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55(3):1029–1050MathSciNetCrossRef Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55(3):1029–1050MathSciNetCrossRef
Zurück zum Zitat Parussini L, Venturi D, Perdikaris P, Karniadakis GE (2017) Multi-fidelity Gaussian process regression for prediction of random fields. J Comput Phys 336:36–50MathSciNetMATHCrossRef Parussini L, Venturi D, Perdikaris P, Karniadakis GE (2017) Multi-fidelity Gaussian process regression for prediction of random fields. J Comput Phys 336:36–50MathSciNetMATHCrossRef
Zurück zum Zitat Perdikaris P, Venturi D, Royset JO, Karniadakis GE (2015) Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields. Proc R Soc: Math, Phys Eng Sci 471(2179):20150018CrossRef Perdikaris P, Venturi D, Royset JO, Karniadakis GE (2015) Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields. Proc R Soc: Math, Phys Eng Sci 471(2179):20150018CrossRef
Zurück zum Zitat Raissi M, Karniadakis G (2016) Deep multi-fidelity Gaussian processes. arXiv preprint arXiv:1604.07484 Raissi M, Karniadakis G (2016) Deep multi-fidelity Gaussian processes. arXiv preprint arXiv:1604.07484
Zurück zum Zitat Ruan X, Jiang P, Zhou Q, Yang Y (2019) An improved co-Kriging multi-fidelity surrogate modeling method for non-nested sampling data. Int J Mech Eng Robot Res 8(4) Ruan X, Jiang P, Zhou Q, Yang Y (2019) An improved co-Kriging multi-fidelity surrogate modeling method for non-nested sampling data. Int J Mech Eng Robot Res 8(4)
Zurück zum Zitat Rumpfkeil MP, Bryson DE, Beran PS (2019) Multi-fidelity sparse polynomial vhaos surrogate models for flutter database generation. In AIAA Scitech 2019 forum (p. 1998) Rumpfkeil MP, Bryson DE, Beran PS (2019) Multi-fidelity sparse polynomial vhaos surrogate models for flutter database generation. In AIAA Scitech 2019 forum (p. 1998)
Zurück zum Zitat Setiono R, Leow WK, Zurada JM (2002) Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans Neural Netw 13(3):564–577CrossRef Setiono R, Leow WK, Zurada JM (2002) Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans Neural Netw 13(3):564–577CrossRef
Zurück zum Zitat Shanock LR, Baran BE, Gentry WA, Pattison SC, Heggestad ED (2010) Polynomial regression with response surface analysis: a powerful approach for examining moderation and overcoming limitations of difference scores. J Bus Psychol 25(4):543–554CrossRef Shanock LR, Baran BE, Gentry WA, Pattison SC, Heggestad ED (2010) Polynomial regression with response surface analysis: a powerful approach for examining moderation and overcoming limitations of difference scores. J Bus Psychol 25(4):543–554CrossRef
Zurück zum Zitat Shi M, Li H, Liu X (2017) Multidisciplinary design optimization of dental implant based on finite element method and surrogate models. J Mech Sci Technol 31(10):5067–5073CrossRef Shi M, Li H, Liu X (2017) Multidisciplinary design optimization of dental implant based on finite element method and surrogate models. J Mech Sci Technol 31(10):5067–5073CrossRef
Zurück zum Zitat Song Y, Cheng QS, Koziel S (2019a) Multi-fidelity local surrogate model for computationally efficient microwave component design optimization. Sensors (Switzerland) 19(13) Song Y, Cheng QS, Koziel S (2019a) Multi-fidelity local surrogate model for computationally efficient microwave component design optimization. Sensors (Switzerland) 19(13)
Zurück zum Zitat Song X, Lv L, Sun W, Zhang J (2019b) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim 60:965–981 Song X, Lv L, Sun W, Zhang J (2019b) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim 60:965–981
Zurück zum Zitat Tao J, Sun G (2019) Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization. Aerosp Sci Technol 92:722–737CrossRef Tao J, Sun G (2019) Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization. Aerosp Sci Technol 92:722–737CrossRef
Zurück zum Zitat Toal DJ (2015) Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Struct Multidiscip Optim 51(6):1223–1245CrossRef Toal DJ (2015) Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Struct Multidiscip Optim 51(6):1223–1245CrossRef
Zurück zum Zitat Van Rijn S, Schmitt S, Olhofer M, van Leeuwen M, Bäck, T (2018) Multi-fidelity surrogate model approach to optimization. In proceedings of the genetic and evolutionary computation conference companion (pp. 225–226). ACM Van Rijn S, Schmitt S, Olhofer M, van Leeuwen M, Bäck, T (2018) Multi-fidelity surrogate model approach to optimization. In proceedings of the genetic and evolutionary computation conference companion (pp. 225–226). ACM
Zurück zum Zitat Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. ASME 2006 international design engineering technical conferences and computers and information in engineering conference. Am Soc Mech Eng 129(4):415–426 Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. ASME 2006 international design engineering technical conferences and computers and information in engineering conference. Am Soc Mech Eng 129(4):415–426
Zurück zum Zitat Wang P, Wang Q, Yang X, Zhan Z (2018) Research on a multi-fidelity surrogate model based model updating strategy. In ASME 2018 International mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection Wang P, Wang Q, Yang X, Zhan Z (2018) Research on a multi-fidelity surrogate model based model updating strategy. In ASME 2018 International mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection
Zurück zum Zitat Wang F, Xiong F, Chen S, Song J (2019) Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling. Struct Multidiscip Optim 60:1583–1604 Wang F, Xiong F, Chen S, Song J (2019) Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling. Struct Multidiscip Optim 60:1583–1604
Zurück zum Zitat Xiao M, Zhang G, Breitkopf P, Villon P, Zhang W (2018) Extended co-Kriging interpolation method based on multi-fidelity data. Appl Math Comput 323:120–131MATH Xiao M, Zhang G, Breitkopf P, Villon P, Zhang W (2018) Extended co-Kriging interpolation method based on multi-fidelity data. Appl Math Comput 323:120–131MATH
Zurück zum Zitat Yan L, Zhou T (2019) Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems. J Comput Phys 381:110–128MathSciNetCrossRef Yan L, Zhou T (2019) Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems. J Comput Phys 381:110–128MathSciNetCrossRef
Zurück zum Zitat Zhang H, Cai W (2015) When doesn’t coKriging outperform Kriging? Stat Sci:176–180 Zhang H, Cai W (2015) When doesn’t coKriging outperform Kriging? Stat Sci:176–180
Zurück zum Zitat Zhang J, Chowdhury S, Messac A (2012) An adaptive hybrid surrogate model. Struct Multidiscip Optim 46(2):223–238CrossRef Zhang J, Chowdhury S, Messac A (2012) An adaptive hybrid surrogate model. Struct Multidiscip Optim 46(2):223–238CrossRef
Zurück zum Zitat Zhang Y, Kim NH, Park C, Haftka RT (2018) Multifidelity surrogate based on single linear regression. AIAA J 56(12):4944–4952CrossRef Zhang Y, Kim NH, Park C, Haftka RT (2018) Multifidelity surrogate based on single linear regression. AIAA J 56(12):4944–4952CrossRef
Zurück zum Zitat Zheng J, Shao X, Gao L, Jiang P, Qiu H (2015) Difference mapping method using least square support vector regression for variable-fidelity metamodelling. Eng Optim 47(6):719–736CrossRef Zheng J, Shao X, Gao L, Jiang P, Qiu H (2015) Difference mapping method using least square support vector regression for variable-fidelity metamodelling. Eng Optim 47(6):719–736CrossRef
Zurück zum Zitat Zhou Q, Shao X, Jiang P, Zhou H, Shu L (2015) An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function. Simul Model Pract Theory 59:18–35CrossRef Zhou Q, Shao X, Jiang P, Zhou H, Shu L (2015) An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function. Simul Model Pract Theory 59:18–35CrossRef
Zurück zum Zitat Zhou Q, Wang Y, Choi SK, Jiang P, Shao X, Hu J (2017) A sequential multi-fidelity metamodeling approach for data regression. Knowl-Based Syst 134:199–212CrossRef Zhou Q, Wang Y, Choi SK, Jiang P, Shao X, Hu J (2017) A sequential multi-fidelity metamodeling approach for data regression. Knowl-Based Syst 134:199–212CrossRef
Metadaten
Titel
A multi-fidelity surrogate model based on support vector regression
Publikationsdatum
17.02.2020
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02522-6

Weitere Artikel der Ausgabe 6/2020

Structural and Multidisciplinary Optimization 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.