Skip to main content
Erschienen in: Acta Mechanica 3/2020

19.12.2019 | Original Paper

A new magnetic structural algorithm based on virtual crack closure technique and magnetic flux leakage testing for circumferential symmetric double-crack propagation of X80 oil and gas pipeline weld

verfasst von: Wei Cui, Yuhang Zhang, Zhongmin Xiao, Qiang Zhang

Erschienen in: Acta Mechanica | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the virtual crack closure technique for finite element numerical simulation, a new magnetic structural algorithm is proposed to analyze fracture signals from nondestructive testing. As an example of solving engineering problems, this algorithm is employed to investigate the circumferential symmetric double-crack propagation in an X80 oil and gas pipeline welding zone. The material property of the welding zone is treated as bilinear kinematic hardening elastic–plastic, and the fluid pressure load on the inner wall of the pipeline weld is dynamically applied. In our magnetic structural multi-physics field model, every time when the incremental crack propagation is completed, the mesh is reconstructed. As a result, the crack propagation and magnetic field is analyzed cyclically. Six characteristic quantities (P, \(G_{ I}\), \(L_\mathrm{g}\), CTOA, \({Bx}^p\), \({\hbox {Ms}}^\mathrm{p}\)) in the process of crack propagation are computed, forming the magnetic structural algorithm for circumferential symmetric double-crack propagation. The results show that using the algorithm can judge the damage location and damage degree of the pipeline weld by calculating the crack growth process. The algorithm has high sensitivity which can distinguish the double cracks whose circumferential spacing is greater than or equal to 0.05 times of the circumferential arc length of the weld. When the circumferential spacing of double cracks is less than or equal to 0.4 times of the circumferential arc length of the weld seam, the single crack grows faster than the double crack due to the interference effect of double cracks, and the existence of double cracks inhibits the crack growth. Through this practical example, it is proved that the implementation of the proposed algorithm can provide a theoretical basis for guiding the actual safety assessment of engineering materials and structures containing microcracks.
Literatur
1.
Zurück zum Zitat Li, L., Yang, Y.H., Xu, Z., Chen, G.: Fatigue crack growth law of API X80 pipeline steel under various stress ratios based on J-integral. Fatigue Fract. Eng. Mater. Struct. 37(10), 1124–1135 (2015)CrossRef Li, L., Yang, Y.H., Xu, Z., Chen, G.: Fatigue crack growth law of API X80 pipeline steel under various stress ratios based on J-integral. Fatigue Fract. Eng. Mater. Struct. 37(10), 1124–1135 (2015)CrossRef
2.
Zurück zum Zitat Xiao, Z.M., Yan, J., Chen, B.J.: Electro-elastic stress analysis for a Zener–Stroh crack interacting with a coated inclusion in piezoelectric solid. Acta Mech. 171(1–2), 29–40 (2004)MATH Xiao, Z.M., Yan, J., Chen, B.J.: Electro-elastic stress analysis for a Zener–Stroh crack interacting with a coated inclusion in piezoelectric solid. Acta Mech. 171(1–2), 29–40 (2004)MATH
3.
Zurück zum Zitat Jia, Y.Z., Wang, J.Q., Han, E.H., Ke, W.: Stress corrosion cracking of X80 pipeline steel in near-neutral pH environment under constant load tests with and without preload. J. Mater. Sci. Technol. 27(11), 1039–1046 (2011)CrossRef Jia, Y.Z., Wang, J.Q., Han, E.H., Ke, W.: Stress corrosion cracking of X80 pipeline steel in near-neutral pH environment under constant load tests with and without preload. J. Mater. Sci. Technol. 27(11), 1039–1046 (2011)CrossRef
4.
Zurück zum Zitat Ping, X.C., Wang, C.G., Cheng, L.P., Chen, M.C., Xu, J.Q.: A super crack front element for three-dimensional fracture mechanics analysis. Eng. Fract. Mech. 196(6), 1–27 (2018)CrossRef Ping, X.C., Wang, C.G., Cheng, L.P., Chen, M.C., Xu, J.Q.: A super crack front element for three-dimensional fracture mechanics analysis. Eng. Fract. Mech. 196(6), 1–27 (2018)CrossRef
5.
Zurück zum Zitat Zhang, B., Qian, C.W., Wang, Y.M., Zhang, Y.Z.: Development and application of high-grade pipeline steel at home and abroad. Pet. Eng. Constr. 38(1), 1–4 (2012) Zhang, B., Qian, C.W., Wang, Y.M., Zhang, Y.Z.: Development and application of high-grade pipeline steel at home and abroad. Pet. Eng. Constr. 38(1), 1–4 (2012)
6.
Zurück zum Zitat Xiao, Z.M., Fan, H., Sun, Y.M.: On the contact zone of a sub-interfacial Zener–Stroh crack. Acta Mech. 142(1–4), 1–16 (2000) Xiao, Z.M., Fan, H., Sun, Y.M.: On the contact zone of a sub-interfacial Zener–Stroh crack. Acta Mech. 142(1–4), 1–16 (2000)
7.
Zurück zum Zitat Zhang, Y.M., Tan, T.K., Xiao, Z.M., Zhang, W.G.: Failure assessment on offshore girth welded pipelines due to corrosion defects. Fatigue Fract. Eng. Mater. Struct. 39(4), 453–466 (2016)CrossRef Zhang, Y.M., Tan, T.K., Xiao, Z.M., Zhang, W.G.: Failure assessment on offshore girth welded pipelines due to corrosion defects. Fatigue Fract. Eng. Mater. Struct. 39(4), 453–466 (2016)CrossRef
8.
Zurück zum Zitat Cao, Y.G., Zhen, Y., He, Y.Y., Zhang, S.H., Sun, Y.T., Yi, H.J., Liu, F.: Prediction of limit pressure in axial through-wall cracked X80 pipeline based on critical crack-tip opening angle. J. China Univ. Pet. 41(2), 139–146 (2017) Cao, Y.G., Zhen, Y., He, Y.Y., Zhang, S.H., Sun, Y.T., Yi, H.J., Liu, F.: Prediction of limit pressure in axial through-wall cracked X80 pipeline based on critical crack-tip opening angle. J. China Univ. Pet. 41(2), 139–146 (2017)
9.
Zurück zum Zitat Menouillard, T., Belytschko, T.: Dynamic fracture with meshfree enriched XFEM. Acta Mech. 213(1–2), 53–69 (2010)MATHCrossRef Menouillard, T., Belytschko, T.: Dynamic fracture with meshfree enriched XFEM. Acta Mech. 213(1–2), 53–69 (2010)MATHCrossRef
10.
Zurück zum Zitat Goangseup, Zi, Belytschko, T.: New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57(15), 2221–2240 (2003)MATHCrossRef Goangseup, Zi, Belytschko, T.: New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57(15), 2221–2240 (2003)MATHCrossRef
11.
Zurück zum Zitat Bouhala, L., Shao, Q., Koutsawa, Y., Younes, A., Núñez, P., Makradi, A., Belouettar, S.: An XFEM crack-tip enrichment for a crack terminating at a bi-material interface. Eng. Fract. Mech. 102(4), 51–64 (2013)CrossRef Bouhala, L., Shao, Q., Koutsawa, Y., Younes, A., Núñez, P., Makradi, A., Belouettar, S.: An XFEM crack-tip enrichment for a crack terminating at a bi-material interface. Eng. Fract. Mech. 102(4), 51–64 (2013)CrossRef
12.
Zurück zum Zitat Kumar, S., Singh, I.V., Mishra, B.K.: A homogenized XFEM approach to simulate fatigue crack growth problems. Comput. Struct. 150(4), 1–22 (2015) Kumar, S., Singh, I.V., Mishra, B.K.: A homogenized XFEM approach to simulate fatigue crack growth problems. Comput. Struct. 150(4), 1–22 (2015)
13.
Zurück zum Zitat Zhang, H.H., Li, L.X., An, X.M., Ma, G.W.: Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Eng. Anal. Bound. Elem. 34(1), 41–50 (2010)MathSciNetMATHCrossRef Zhang, H.H., Li, L.X., An, X.M., Ma, G.W.: Numerical analysis of 2-D crack propagation problems using the numerical manifold method. Eng. Anal. Bound. Elem. 34(1), 41–50 (2010)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Zheng, H., Xu, D.D.: New strategies for some issues of numerical manifold method in simulation of crack propagation. Int. J. Numer. Methods Eng. 97(13), 986–1010 (2014)MathSciNetMATHCrossRef Zheng, H., Xu, D.D.: New strategies for some issues of numerical manifold method in simulation of crack propagation. Int. J. Numer. Methods Eng. 97(13), 986–1010 (2014)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Ma, G.W., An, X.M., Zhang, H.H., Li, L.X.: Modeling complex crack problems using the numerical manifold method. Int. J. Fract. 156(1), 21–35 (2009)MATHCrossRef Ma, G.W., An, X.M., Zhang, H.H., Li, L.X.: Modeling complex crack problems using the numerical manifold method. Int. J. Fract. 156(1), 21–35 (2009)MATHCrossRef
16.
Zurück zum Zitat Xie, D., Biggers, S.B.: Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem. Anal. Des. 42(11), 977–984 (2006)CrossRef Xie, D., Biggers, S.B.: Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem. Anal. Des. 42(11), 977–984 (2006)CrossRef
17.
Zurück zum Zitat Krueger, R.: Virtual crack closure technique: history, approach and applications. Appl. Mech. Rev. 57(1), 109–143 (2004)CrossRef Krueger, R.: Virtual crack closure technique: history, approach and applications. Appl. Mech. Rev. 57(1), 109–143 (2004)CrossRef
18.
Zurück zum Zitat Farkash, E., Banks-Sills, L.: Virtual crack closure technique for an interface crack between two transversely isotropic materials. Int. J. Fract. 205(2), 189–202 (2017)CrossRef Farkash, E., Banks-Sills, L.: Virtual crack closure technique for an interface crack between two transversely isotropic materials. Int. J. Fract. 205(2), 189–202 (2017)CrossRef
19.
Zurück zum Zitat Burlayenko, V.N., Altenbach, H., Sadowski, T., Dimitrova, S.D.: Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate. Comput. Mater. Sci. 116(4), 11–21 (2016)CrossRef Burlayenko, V.N., Altenbach, H., Sadowski, T., Dimitrova, S.D.: Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate. Comput. Mater. Sci. 116(4), 11–21 (2016)CrossRef
20.
Zurück zum Zitat Valvo, P.S.: A revised virtual crack closure technique for physically consistent fracture mode partitioning. Int. J. Fract. 173(1), 1–20 (2012)MATHCrossRef Valvo, P.S.: A revised virtual crack closure technique for physically consistent fracture mode partitioning. Int. J. Fract. 173(1), 1–20 (2012)MATHCrossRef
21.
Zurück zum Zitat Shokrieh, M.M., Rajabpour-Shirazi, H., Heidari-Rarani, M., Haghpanahi, M.: Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Comput. Mater. Sci. 65(12), 66–73 (2012)CrossRef Shokrieh, M.M., Rajabpour-Shirazi, H., Heidari-Rarani, M., Haghpanahi, M.: Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Comput. Mater. Sci. 65(12), 66–73 (2012)CrossRef
22.
Zurück zum Zitat Yao, A.L., He, W.B., Xu, T.L., Jiang, H.Y., Gu, D.F.: A 3D-VCCT based method for the fracture analysis of gas line pipes with multiple cracks. Nat. Gas Ind. 39(3), 85–93 (2019) Yao, A.L., He, W.B., Xu, T.L., Jiang, H.Y., Gu, D.F.: A 3D-VCCT based method for the fracture analysis of gas line pipes with multiple cracks. Nat. Gas Ind. 39(3), 85–93 (2019)
23.
Zurück zum Zitat Sim, J.M., Yoon-Suk, Chang: Crack growth evaluation by XFEM for nuclear pipes considering thermal aging embrittlement effect. Fatigue Fract. Eng. Mater. Struct. 42(4), 775–791 (2019)CrossRef Sim, J.M., Yoon-Suk, Chang: Crack growth evaluation by XFEM for nuclear pipes considering thermal aging embrittlement effect. Fatigue Fract. Eng. Mater. Struct. 42(4), 775–791 (2019)CrossRef
24.
Zurück zum Zitat Zhang, Y.M., Xiao, Z.M., Luo, J.: Fatigue crack growth investigation on offshore pipelines with three-dimensional interacting cracks. Geosci. Front. 9(6), 1689–1698 (2018)CrossRef Zhang, Y.M., Xiao, Z.M., Luo, J.: Fatigue crack growth investigation on offshore pipelines with three-dimensional interacting cracks. Geosci. Front. 9(6), 1689–1698 (2018)CrossRef
25.
Zurück zum Zitat Jin, Q., Sun, Z.Y., Sun, W.: Study on fatigue crack growth in \(\text{ co }_{2}\) pipelines with an axial surface crack under pulsating internal pressure. Eng. Mech. 32(5), 84–93 (2015) Jin, Q., Sun, Z.Y., Sun, W.: Study on fatigue crack growth in \(\text{ co }_{2}\) pipelines with an axial surface crack under pulsating internal pressure. Eng. Mech. 32(5), 84–93 (2015)
26.
Zurück zum Zitat Zarrinzadeh, H., Kabir, M.Z., Deylami, A.: Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch. Eng. Struct. 133(2), 24–32 (2017)CrossRef Zarrinzadeh, H., Kabir, M.Z., Deylami, A.: Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch. Eng. Struct. 133(2), 24–32 (2017)CrossRef
27.
Zurück zum Zitat Yu, J.X., Li, X.B., Tan, Y.N., Jin, C.X., Feng, Z.O., Han, X.X., Fu, F.: Analysis of the stress intensity factor of a pipeline surface with a pit-crack. J. Tianjin Univ. (Sci. Technol.) 52(5), 522–528 (2019) Yu, J.X., Li, X.B., Tan, Y.N., Jin, C.X., Feng, Z.O., Han, X.X., Fu, F.: Analysis of the stress intensity factor of a pipeline surface with a pit-crack. J. Tianjin Univ. (Sci. Technol.) 52(5), 522–528 (2019)
28.
Zurück zum Zitat Cui, W., Wang, K., Jiang, M.Z., Ma, C.Y., Feng, Z.M., Leng, J.C.: Characterization on fluid-solid-magnetic multifield coupling of the weld cracks growth in pipelines. Mater. Rev. 32(8), 2852–2858 (2018) Cui, W., Wang, K., Jiang, M.Z., Ma, C.Y., Feng, Z.M., Leng, J.C.: Characterization on fluid-solid-magnetic multifield coupling of the weld cracks growth in pipelines. Mater. Rev. 32(8), 2852–2858 (2018)
30.
Zurück zum Zitat Jokinen, J., Kanerva, M.: Simulation of delamination growth at CFRP-tungsten aerospace laminates using VCCT and CZM modelling techniques. Appl. Compos. Mater. 26(3), 709–721 (2019)CrossRef Jokinen, J., Kanerva, M.: Simulation of delamination growth at CFRP-tungsten aerospace laminates using VCCT and CZM modelling techniques. Appl. Compos. Mater. 26(3), 709–721 (2019)CrossRef
31.
Zurück zum Zitat Liu, W.Y.: Study on Crack Propagation in Heat Affected Zone of Pressure Pipeline Welding. Southwest Petroleum University, Chengdu (2017) Liu, W.Y.: Study on Crack Propagation in Heat Affected Zone of Pressure Pipeline Welding. Southwest Petroleum University, Chengdu (2017)
32.
Zurück zum Zitat Shi, L.: A Study on the Fracture Toughness of X80 Pipeline Steel Welded Joint. Tianjin University, Tianjin (2014) Shi, L.: A Study on the Fracture Toughness of X80 Pipeline Steel Welded Joint. Tianjin University, Tianjin (2014)
33.
Zurück zum Zitat Jeanette, L.: Review of Materials Property Data for Nondestructive Characterization of Pipeline Materials. Iowa State University, Ames (2015) Jeanette, L.: Review of Materials Property Data for Nondestructive Characterization of Pipeline Materials. Iowa State University, Ames (2015)
34.
Zurück zum Zitat Mukherjee, D., Saha, S., Mukhopadhyay, S.: Inverse mapping of magnetic flux leakage signal for defect characterization. NDT&E Int. 54(3), 198–208 (2013)CrossRef Mukherjee, D., Saha, S., Mukhopadhyay, S.: Inverse mapping of magnetic flux leakage signal for defect characterization. NDT&E Int. 54(3), 198–208 (2013)CrossRef
35.
Zurück zum Zitat Yan, S., Chao, Z., Rui, L., Cai, M.L., Jia, G.W.: Theory and application of magnetic flux leakage pipeline detection. Sensors 15(12), 31036–31055 (2015)CrossRef Yan, S., Chao, Z., Rui, L., Cai, M.L., Jia, G.W.: Theory and application of magnetic flux leakage pipeline detection. Sensors 15(12), 31036–31055 (2015)CrossRef
36.
Zurück zum Zitat Afzal, M., Udpa, S.: Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline. NDT&E Int. 35(7), 449–457 (2002)CrossRef Afzal, M., Udpa, S.: Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline. NDT&E Int. 35(7), 449–457 (2002)CrossRef
37.
Zurück zum Zitat Wang, Y., Liu, X., Wu, B., Xiao, J.W., Wu, D.H., He, C.F.: Dipole modeling of stress-dependent magnetic flux leakage. NDT&E Int. 95(4), 1–8 (2018)CrossRef Wang, Y., Liu, X., Wu, B., Xiao, J.W., Wu, D.H., He, C.F.: Dipole modeling of stress-dependent magnetic flux leakage. NDT&E Int. 95(4), 1–8 (2018)CrossRef
38.
Zurück zum Zitat Kim, J.W., Park, S.: Magnetic flux leakage sensing and artificial neural network pattern recognition-based automated damage detection and quantification for wire rope non-destructive evaluation. Sensors 18(2), 109–128 (2018)CrossRef Kim, J.W., Park, S.: Magnetic flux leakage sensing and artificial neural network pattern recognition-based automated damage detection and quantification for wire rope non-destructive evaluation. Sensors 18(2), 109–128 (2018)CrossRef
Metadaten
Titel
A new magnetic structural algorithm based on virtual crack closure technique and magnetic flux leakage testing for circumferential symmetric double-crack propagation of X80 oil and gas pipeline weld
verfasst von
Wei Cui
Yuhang Zhang
Zhongmin Xiao
Qiang Zhang
Publikationsdatum
19.12.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02578-6

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.