Skip to main content
Erschienen in: Acta Mechanica 3/2020

19.12.2019 | Original Paper

The rotation toughening mechanism of barb–barbule joint in the barb delamination of feathers

verfasst von: Qiang Chen, Nicola M. Pugno, Zhiyong Li

Erschienen in: Acta Mechanica | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The barb–barbule structure branching from a feather shaft is a basic unit of a bird feather, and the structure is intricately organized to form the feather vane, which plays an important role in keeping the feather’s integrity during bird flight. In this paper, by coupling nonlinear large deformations of the barb and barbule, an analytical model of delaminating two neighboring barbs on the basis of critical-friction detaching criteria is developed. Considering the rotation and non-rotation of barb–barbule joints in the delamination, a rotatable model (LargeRM) and a non-rotatable model (LargeNRM) are treated to explain the rotation’s contribution to toughening the feather vane. The results show that the predicted interlocking forces of un-detached barbules in the two models were linearly distributed during the delamination. Due to the rotatable barb–barbule joint, the critical detaching force and the elastic strain energy of the two neighboring barbs in the LargeRM are greater than those in the LargeNRM, and this indicates that the rotatable barb–barbule joint could enhance the in-plane delaminating toughness of the feather vane. The present model reveals the nonlinear barb delamination behavior and explains the rotation toughening mechanism of the barb–barbule joint in the barb delamination and further is used to design new bio-inspired interlocking materials, e.g., the feather-inspired Velcro fastener.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kovalev, A., et al.: Unzipping bird feathers. J. R. Soc. Interface 11, 20130988 (2014)CrossRef Kovalev, A., et al.: Unzipping bird feathers. J. R. Soc. Interface 11, 20130988 (2014)CrossRef
2.
Zurück zum Zitat Chen, Q., et al.: An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers. EPL 116(2), 24001 (2016)CrossRef Chen, Q., et al.: An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers. EPL 116(2), 24001 (2016)CrossRef
3.
Zurück zum Zitat Chen, Q., Pugno, N.M.: Bio-mimetic mechanisms of natural hierarchical materials: a review. J. Mech. Behav. Biomed. Mater. 19, 3–33 (2013)CrossRef Chen, Q., Pugno, N.M.: Bio-mimetic mechanisms of natural hierarchical materials: a review. J. Mech. Behav. Biomed. Mater. 19, 3–33 (2013)CrossRef
4.
Zurück zum Zitat Katti, K.S., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005)CrossRef Katti, K.S., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005)CrossRef
5.
Zurück zum Zitat Zhang, X., et al.: The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material. Sci. Rep. 7(1), 4440 (2017)CrossRef Zhang, X., et al.: The beetle elytron plate: a lightweight, high-strength and buffering functional-structural bionic material. Sci. Rep. 7(1), 4440 (2017)CrossRef
6.
Zurück zum Zitat Ennos, A., et al.: Functional morphology of the vanes of the flight feathers of the pigeon Columba livia. J. Exp. Biol. 198(5), 1219–1228 (1995) Ennos, A., et al.: Functional morphology of the vanes of the flight feathers of the pigeon Columba livia. J. Exp. Biol. 198(5), 1219–1228 (1995)
7.
Zurück zum Zitat Worcester, S.E.: The scaling of the size and stiffness of primary flight feathers. J. Zool. 239(3), 609–624 (1996)CrossRef Worcester, S.E.: The scaling of the size and stiffness of primary flight feathers. J. Zool. 239(3), 609–624 (1996)CrossRef
8.
Zurück zum Zitat Wang, X., et al.: Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25(3), 547–555 (2012)CrossRef Wang, X., et al.: Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25(3), 547–555 (2012)CrossRef
9.
Zurück zum Zitat Purslow, P.P., et al.: Mechanical properties of primary feathers from the pigeon. J. Exp. Biol. 73, 251–260 (1978) Purslow, P.P., et al.: Mechanical properties of primary feathers from the pigeon. J. Exp. Biol. 73, 251–260 (1978)
10.
Zurück zum Zitat Pennycuick, C.J., Lock, A.: Elastic energy storage in primary feather shafts. J. Exp. Biol. 64, 677–689 (1976) Pennycuick, C.J., Lock, A.: Elastic energy storage in primary feather shafts. J. Exp. Biol. 64, 677–689 (1976)
11.
Zurück zum Zitat Lingham-Soliar, T.: Feather structure, biomechanics and biomimetics: the incredible lightness of being. J. Ornithol. 155, 323–336 (2014)CrossRef Lingham-Soliar, T.: Feather structure, biomechanics and biomimetics: the incredible lightness of being. J. Ornithol. 155, 323–336 (2014)CrossRef
12.
Zurück zum Zitat Bonser, R.H.C., Purslow, P.P.: The Young’s modulus of feather keratin. J. Exp. Biol. 198, 1029–1033 (1995) Bonser, R.H.C., Purslow, P.P.: The Young’s modulus of feather keratin. J. Exp. Biol. 198, 1029–1033 (1995)
13.
Zurück zum Zitat Wang, B., Meyers, M.A.: Light like a feather: a fibrous natural composite with a shape changing from round to square. Adv. Sci. 4(3), 1600360 (2017)CrossRef Wang, B., Meyers, M.A.: Light like a feather: a fibrous natural composite with a shape changing from round to square. Adv. Sci. 4(3), 1600360 (2017)CrossRef
14.
Zurück zum Zitat Macleod, G.D.: Mechanical properties of contour feathers. J. Exp. Biol. 87, 65–71 (1980) Macleod, G.D.: Mechanical properties of contour feathers. J. Exp. Biol. 87, 65–71 (1980)
15.
Zurück zum Zitat Corning, W.R., Biewener, A.A.: In vivo strains in pigeon flight feather shafts: implications for structural design. J. Exp. Biol. 201, 3057–3065 (1998) Corning, W.R., Biewener, A.A.: In vivo strains in pigeon flight feather shafts: implications for structural design. J. Exp. Biol. 201, 3057–3065 (1998)
16.
Zurück zum Zitat Wang, B., et al.: Seagull feather shaft: correlation between structure and mechanical response. Acta Biomater. 48, 270–288 (2017)CrossRef Wang, B., et al.: Seagull feather shaft: correlation between structure and mechanical response. Acta Biomater. 48, 270–288 (2017)CrossRef
17.
Zurück zum Zitat Chen, H., et al.: Biomimetic drag reduction study on herringbone riblets of bird feather. J. Bionic Eng. 10, 341–349 (2013)CrossRef Chen, H., et al.: Biomimetic drag reduction study on herringbone riblets of bird feather. J. Bionic Eng. 10, 341–349 (2013)CrossRef
18.
Zurück zum Zitat Sullivan, T.N., et al.: A lightweight, biological structure with tailored stiffness: The feather vane. Acta Biomater. 41, 27–39 (2016)CrossRef Sullivan, T.N., et al.: A lightweight, biological structure with tailored stiffness: The feather vane. Acta Biomater. 41, 27–39 (2016)CrossRef
19.
Zurück zum Zitat Sullivan, T.N., et al.: Reversible attachment with tailored permeability: the feather vane and bioinspired designs. Adv. Fun. Mater. 27(39), 1702954 (2017)CrossRef Sullivan, T.N., et al.: Reversible attachment with tailored permeability: the feather vane and bioinspired designs. Adv. Fun. Mater. 27(39), 1702954 (2017)CrossRef
20.
Zurück zum Zitat Pugno, N.M.: Velcro® nonlinear mechanics. Appl. Phys. Lett. 90, 121918 (2007)CrossRef Pugno, N.M.: Velcro® nonlinear mechanics. Appl. Phys. Lett. 90, 121918 (2007)CrossRef
21.
Zurück zum Zitat Chen, Q., et al.: Mechanics of plant fruit hooks. J. R. Soc. Interface 10, 20120913 (2013)CrossRef Chen, Q., et al.: Mechanics of plant fruit hooks. J. R. Soc. Interface 10, 20120913 (2013)CrossRef
22.
Zurück zum Zitat Vokoun, D., et al.: Velcro-like fasteners based on NiTi micro-hook arrays. Smart Mater. Struct. 20, 085027 (2011)CrossRef Vokoun, D., et al.: Velcro-like fasteners based on NiTi micro-hook arrays. Smart Mater. Struct. 20, 085027 (2011)CrossRef
23.
Zurück zum Zitat Mariani, L.M., et al.: Observations of stick-slip friction in Velcro®. Tribol. Lett. 56, 189–196 (2014)CrossRef Mariani, L.M., et al.: Observations of stick-slip friction in Velcro®. Tribol. Lett. 56, 189–196 (2014)CrossRef
Metadaten
Titel
The rotation toughening mechanism of barb–barbule joint in the barb delamination of feathers
verfasst von
Qiang Chen
Nicola M. Pugno
Zhiyong Li
Publikationsdatum
19.12.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02566-w

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.