Skip to main content
Erschienen in: Acta Mechanica 3/2020

18.12.2019 | Original Paper

Existence of second spectrums of Timoshenko beam and Mindlin–Herrmann rod theories on the basis of atomistic studies

verfasst von: Amit K. Patra, S. Gopalakrishnan, Ranjan Ganguli

Erschienen in: Acta Mechanica | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper considers a single-layer 2D triangular lattice system as an ideal higher-order rod and/or beam. The objective is to compare the solutions of these continuum models with the standard atomistic solutions. The accuracy of these higher-order rod and beam theories, in modeling several nano-systems, depends on the frequency of vibration. The existence of a second spectrum associated with these higher-order continuum theories and its contribution to the continuum solutions are studied on the basis of molecular dynamics (MD) results. It is shown that the second spectrum of a Timoshenko beam is less accurate with respect to the MD results but cannot be disregarded totally. Also, the existence of a second propagating mode associated with a Mindlin–Herrmann rod is substantiated by MD simulation results. The accuracy of these higher order rod and beam theories deteriorates beyond their cut-on frequencies. However, the use of higher-order rod and beam theories in several high-frequency dynamic and multiscale analyses is still justifiable.
Literatur
1.
Zurück zum Zitat Bogacz, R., Nowakowski, S., Popp, K.: On the stability of a Timoshenko beam on an elastic foundation. Acta Mech. 61(1–4), 117–127 (1986)CrossRef Bogacz, R., Nowakowski, S., Popp, K.: On the stability of a Timoshenko beam on an elastic foundation. Acta Mech. 61(1–4), 117–127 (1986)CrossRef
2.
Zurück zum Zitat Pirmoradian, M., Keshmiri, M., Karimpour, H.: On the parametric excitation of a Timoshenko beam due to intermittent passage of moving masses: instability and resonance analysis. Acta Mech. 226(4), 1241–1253 (2015)MathSciNetCrossRef Pirmoradian, M., Keshmiri, M., Karimpour, H.: On the parametric excitation of a Timoshenko beam due to intermittent passage of moving masses: instability and resonance analysis. Acta Mech. 226(4), 1241–1253 (2015)MathSciNetCrossRef
3.
Zurück zum Zitat Lim, S.: Exact solutions for extensible circular curved Timoshenko beams with nonhomogenous elastic boundary conditions. Acta Mech. 130(1–2), 67–79 (1998) Lim, S.: Exact solutions for extensible circular curved Timoshenko beams with nonhomogenous elastic boundary conditions. Acta Mech. 130(1–2), 67–79 (1998)
4.
Zurück zum Zitat Krommer, M., Irschik, H.: A Reissner–Mindlin-type plate theory including the direct piezoelectric and pyroelectric effect. Acta Mech. 141(1–2), 51–69 (2000)CrossRef Krommer, M., Irschik, H.: A Reissner–Mindlin-type plate theory including the direct piezoelectric and pyroelectric effect. Acta Mech. 141(1–2), 51–69 (2000)CrossRef
5.
Zurück zum Zitat Huang, J., Nguyen-Thanh, N., Zhou, K.: Extended isogeometric analysis based on bezier extraction for the buckling analysis of Mindlin–Reissner plates. Acta Mech. 228(9), 3077–3093 (2017)MathSciNetCrossRef Huang, J., Nguyen-Thanh, N., Zhou, K.: Extended isogeometric analysis based on bezier extraction for the buckling analysis of Mindlin–Reissner plates. Acta Mech. 228(9), 3077–3093 (2017)MathSciNetCrossRef
6.
Zurück zum Zitat Fedotov, I., Shatalov, M., Marais, J.: Hyperbolic and pseudo-hyperbolic equations in the theory of vibration. Acta Mech. 227(11), 3315–3324 (2016)MathSciNetCrossRef Fedotov, I., Shatalov, M., Marais, J.: Hyperbolic and pseudo-hyperbolic equations in the theory of vibration. Acta Mech. 227(11), 3315–3324 (2016)MathSciNetCrossRef
7.
Zurück zum Zitat Panchore, V., Ganguli, R., Omkar, S.: Meshless local Petrov–Galerkin method for rotating Timishenko beam: a locking free shape function formulation. CMES Comput. Model. Eng. Sci. 108(4), 215–237 (2015) Panchore, V., Ganguli, R., Omkar, S.: Meshless local Petrov–Galerkin method for rotating Timishenko beam: a locking free shape function formulation. CMES Comput. Model. Eng. Sci. 108(4), 215–237 (2015)
8.
Zurück zum Zitat Bhat, K., Sarkar, K., Ganguli, R., Elishakoff, I.: Slope-inertia model of non-uniform and inhomogenous Bresse–Timoshenko beams. AIAA J. 56(10), 4158–4168 (2018)CrossRef Bhat, K., Sarkar, K., Ganguli, R., Elishakoff, I.: Slope-inertia model of non-uniform and inhomogenous Bresse–Timoshenko beams. AIAA J. 56(10), 4158–4168 (2018)CrossRef
9.
Zurück zum Zitat Abbasion, S., Rafsanjani, A., Avazmohammadi, R., Farshidianfar, A.: Free vibration of microscaled Timoshenko beams. Appl. Phys. Lett. 95(14), 143,122 (2009)CrossRef Abbasion, S., Rafsanjani, A., Avazmohammadi, R., Farshidianfar, A.: Free vibration of microscaled Timoshenko beams. Appl. Phys. Lett. 95(14), 143,122 (2009)CrossRef
10.
Zurück zum Zitat Hsu, J.C., Lee, H.L., Chang, W.J.: Flexural vibration frequency of atomic force microscope cantilevers using the Timoshenko beam model. Nanotechnology 18(28), 285,503 (2007)CrossRef Hsu, J.C., Lee, H.L., Chang, W.J.: Flexural vibration frequency of atomic force microscope cantilevers using the Timoshenko beam model. Nanotechnology 18(28), 285,503 (2007)CrossRef
11.
Zurück zum Zitat Wang, C., Zhang, Y., He, X.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10), 105,401 (2007)CrossRef Wang, C., Zhang, Y., He, X.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10), 105,401 (2007)CrossRef
12.
Zurück zum Zitat Wang, Q., Zhou, G., Lin, K.: Scale effect on wave propagation of double-walled carbon nanotubes. Int. J. Solids Struct. 43(20), 6071–6084 (2006)CrossRef Wang, Q., Zhou, G., Lin, K.: Scale effect on wave propagation of double-walled carbon nanotubes. Int. J. Solids Struct. 43(20), 6071–6084 (2006)CrossRef
13.
Zurück zum Zitat Patra, A.K., Gopalakrishnan, S., Ganguli, R.: A spectral multiscale method for wave propagation analysis: atomistic–continuum coupled simulation. Comput. Methods Appl. Mech. Eng. 278(17), 744–764 (2014)MathSciNetCrossRef Patra, A.K., Gopalakrishnan, S., Ganguli, R.: A spectral multiscale method for wave propagation analysis: atomistic–continuum coupled simulation. Comput. Methods Appl. Mech. Eng. 278(17), 744–764 (2014)MathSciNetCrossRef
14.
Zurück zum Zitat Wang, X., Lee, J.D., Deng, Q.: Modeling and simulation of wave propagation based on atomistic field theory. J. Appl. Mech. 78(2), 021,012 (2011)CrossRef Wang, X., Lee, J.D., Deng, Q.: Modeling and simulation of wave propagation based on atomistic field theory. J. Appl. Mech. 78(2), 021,012 (2011)CrossRef
15.
Zurück zum Zitat Mindlin, R., Herrmann, G.: A one-dimensional theory of compressional waves in an elastic rod. In: Journal Of Applied Mechanics-Transactions Of The ASME, vol. 18, pp. 331–332. ASME-Amer Soc Mechanical Eng., New York (1951) Mindlin, R., Herrmann, G.: A one-dimensional theory of compressional waves in an elastic rod. In: Journal Of Applied Mechanics-Transactions Of The ASME, vol. 18, pp. 331–332. ASME-Amer Soc Mechanical Eng., New York (1951)
16.
17.
Zurück zum Zitat Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(245), 744–746 (1921)CrossRef Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(245), 744–746 (1921)CrossRef
18.
Zurück zum Zitat Levinson, M., Cooke, D.: On the two frequency spectra of Timoshenko beams. J. Sound Vib. 84(3), 319–326 (1982)CrossRef Levinson, M., Cooke, D.: On the two frequency spectra of Timoshenko beams. J. Sound Vib. 84(3), 319–326 (1982)CrossRef
19.
20.
Zurück zum Zitat Stephen, N.: The second frequency spectrum of Timoshenko beams. J. Sound Vib. 80(3), 578–582 (1982)CrossRef Stephen, N.: The second frequency spectrum of Timoshenko beams. J. Sound Vib. 80(3), 578–582 (1982)CrossRef
21.
Zurück zum Zitat Stephen, N.: The second spectrum of Timoshenko beam theory: further assessment. J. Sound Vib. 292(1), 372–389 (2006)CrossRef Stephen, N.: The second spectrum of Timoshenko beam theory: further assessment. J. Sound Vib. 292(1), 372–389 (2006)CrossRef
22.
Zurück zum Zitat Stephen, N.: On the Ostrogradski instability for higher-order derivative theories and a pseudo-mechanical energy. J. Sound Vib. 310(3), 729–739 (2008)CrossRef Stephen, N.: On the Ostrogradski instability for higher-order derivative theories and a pseudo-mechanical energy. J. Sound Vib. 310(3), 729–739 (2008)CrossRef
23.
Zurück zum Zitat Nesterenko, V.: A theory for transverse vibrations of the Timoshenko beam. J. Appl. Math. Mech. 57(4), 669–677 (1993)MathSciNetCrossRef Nesterenko, V.: A theory for transverse vibrations of the Timoshenko beam. J. Appl. Math. Mech. 57(4), 669–677 (1993)MathSciNetCrossRef
24.
Zurück zum Zitat Stephen, N., Puchegger, S.: On the valid frequency range of Timoshenko beam theory. J. Sound Vib. 297(3), 1082–1087 (2006)CrossRef Stephen, N., Puchegger, S.: On the valid frequency range of Timoshenko beam theory. J. Sound Vib. 297(3), 1082–1087 (2006)CrossRef
25.
Zurück zum Zitat Smith, R.W.: Graphical representation of Timoshenko beam modes for clamped–clamped boundary conditions at high frequency: beyond transverse deflection. Wave Motion 45(6), 785–794 (2008)CrossRef Smith, R.W.: Graphical representation of Timoshenko beam modes for clamped–clamped boundary conditions at high frequency: beyond transverse deflection. Wave Motion 45(6), 785–794 (2008)CrossRef
26.
Zurück zum Zitat Bhaskar, A.: Elastic waves in Timoshenko beams: the lost and foundof an eigenmode. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2101), 239–255 (2009)MathSciNetCrossRef Bhaskar, A.: Elastic waves in Timoshenko beams: the lost and foundof an eigenmode. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2101), 239–255 (2009)MathSciNetCrossRef
27.
Zurück zum Zitat Downs, B.: Transverse vibration of a uniform, simply supported Timoshenko beam without transverse deflection. J. Appl. Mech. 43(4), 671–674 (1976)CrossRef Downs, B.: Transverse vibration of a uniform, simply supported Timoshenko beam without transverse deflection. J. Appl. Mech. 43(4), 671–674 (1976)CrossRef
28.
Zurück zum Zitat Gopalakrishnan, S., Martin, M., Doyle, J.: A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams. J. Sound Vib. 158(1), 11–24 (1992)CrossRef Gopalakrishnan, S., Martin, M., Doyle, J.: A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams. J. Sound Vib. 158(1), 11–24 (1992)CrossRef
29.
Zurück zum Zitat Gopalakrishnan, S.: A deep rod finite element for structural dynamics and wave propagation problems. Int. J. Numer. Methods Eng. 48(5), 731–744 (2000)CrossRef Gopalakrishnan, S.: A deep rod finite element for structural dynamics and wave propagation problems. Int. J. Numer. Methods Eng. 48(5), 731–744 (2000)CrossRef
30.
Zurück zum Zitat Chan, K., Wang, X., So, R.: Superposed standing waves in a Timoshenko beam. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458(2017), 83–108 (2002)MathSciNetCrossRef Chan, K., Wang, X., So, R.: Superposed standing waves in a Timoshenko beam. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458(2017), 83–108 (2002)MathSciNetCrossRef
31.
Zurück zum Zitat Bhaskar, A.: Waveguide modes in elastic rods. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2029), 175–194 (2003)MathSciNetCrossRef Bhaskar, A.: Waveguide modes in elastic rods. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2029), 175–194 (2003)MathSciNetCrossRef
32.
Zurück zum Zitat Díaz-de Anda, A., Flores, J., Gutiérrez, L., Méndez-Sánchez, R., Monsivais, G., Morales, A.: Experimental study of the Timoshenko beam theory predictions. J. Sound Vib. 331(26), 5732–5744 (2012)CrossRef Díaz-de Anda, A., Flores, J., Gutiérrez, L., Méndez-Sánchez, R., Monsivais, G., Morales, A.: Experimental study of the Timoshenko beam theory predictions. J. Sound Vib. 331(26), 5732–5744 (2012)CrossRef
33.
Zurück zum Zitat Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, vol. 1. Academic Press, Cambridge (2001)MATH Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, vol. 1. Academic Press, Cambridge (2001)MATH
34.
Zurück zum Zitat Kishor, D., Gopalakrishnan, S., Ganguli, R.: Wave propagation in acoustic fluids using spectral finite element model. Int. J. Numer. Methods Eng. 83(3), 1–53 (2010)MATH Kishor, D., Gopalakrishnan, S., Ganguli, R.: Wave propagation in acoustic fluids using spectral finite element model. Int. J. Numer. Methods Eng. 83(3), 1–53 (2010)MATH
35.
Zurück zum Zitat Kittel, C.: Introduction to Solid State Physics. Wiley India, New Delhi (2008)MATH Kittel, C.: Introduction to Solid State Physics. Wiley India, New Delhi (2008)MATH
36.
Zurück zum Zitat Friesecke, G., Matthies, K.: Geometric solitary waves in a 2 D mass-spring lattice. Discrete Contin. Dyn. Syst. Ser. B 3(1), 105–144 (2003)MathSciNetMATH Friesecke, G., Matthies, K.: Geometric solitary waves in a 2 D mass-spring lattice. Discrete Contin. Dyn. Syst. Ser. B 3(1), 105–144 (2003)MathSciNetMATH
37.
Zurück zum Zitat Gopalakrishnan, S., Chakraborty, A., Mahapatra, D.R.: Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures. Springer, Berlin (2007)MATH Gopalakrishnan, S., Chakraborty, A., Mahapatra, D.R.: Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures. Springer, Berlin (2007)MATH
38.
Zurück zum Zitat Dong, S., Alpdogan, C., Taciroglu, E.: Much ado about shear correction factors in Timoshenko beam theory. Int. J. Solids Struct. 47(13), 1651–1665 (2010)CrossRef Dong, S., Alpdogan, C., Taciroglu, E.: Much ado about shear correction factors in Timoshenko beam theory. Int. J. Solids Struct. 47(13), 1651–1665 (2010)CrossRef
39.
Zurück zum Zitat Doyle, J., Farris, T.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 5, 99–107 (1990) Doyle, J., Farris, T.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 5, 99–107 (1990)
40.
Zurück zum Zitat Murthy, M., Gopalakrishnan, S., Nair, P.: Signal wrap-around free spectral element formulation for multiply connected finite 1 D waveguides. J. Aerosp. Sci. Technol. 63(1), 72 (2011) Murthy, M., Gopalakrishnan, S., Nair, P.: Signal wrap-around free spectral element formulation for multiply connected finite 1 D waveguides. J. Aerosp. Sci. Technol. 63(1), 72 (2011)
Metadaten
Titel
Existence of second spectrums of Timoshenko beam and Mindlin–Herrmann rod theories on the basis of atomistic studies
verfasst von
Amit K. Patra
S. Gopalakrishnan
Ranjan Ganguli
Publikationsdatum
18.12.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02587-5

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.