Skip to main content
Erschienen in: Acta Mechanica 3/2020

17.12.2019 | Original Paper

Equivalence of Lagrange’s equations for non-material volume and the principle of virtual work in ALE formulation

verfasst von: Kai-Dong Chen, Jia-Peng Liu, Jia-Qi Chen, Xiao-Yu Zhong, Aki Mikkola, Qiu-Hai Lu, Ge-Xue Ren

Erschienen in: Acta Mechanica | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Arbitrary Lagrangian–Eulerian (ALE) formulation provides a high-efficiency approach to simulate the moving contact behaviors in mechanical systems using the relative movement between material points and mesh nodes. Two approaches have been widely adopted to obtain the governing equations of ALE elements, namely (i) Lagrange’s equations for non-material volume and (ii) the principle of virtual work. Indeed, consistent numerical results should be obtained through these two approaches; however, their mathematical expressions are quite different at first glance. In this paper, the equivalence of the above-mentioned two approaches demonstrated analytically for a general case and a specific example of three-dimensional two-node ALE cable elements. Additionally, the existence and disappearance conditions for additional terms \({\mathbf {L}}_{1}\) and \({\mathbf {L}}_{2}\) of the generalized inertial forces, which distinguish the ALE formulation from the Lagrangian formulation, are explicitly presented. They are physically caused by the material flow through the boundary and mathematically caused by the dependence of the mass matrix \({\mathbf {M}}\) on the material coordinates \(p_{1}\) and \(p_{2}\). When no mass is transported through the boundary surface or the kinetic energy of the material points flowing into or out of the control volume is zero, \({\mathbf {L}}_{1}\) and \({\mathbf {L}}_{2}\) automatically disappear, and the governing equations degenerate to the classical form of Lagrange’s equations. Finally, an example of preloaded wire rope with variable length is used to verify the above conclusions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures. Wiley, Hoboken (2013)MATH Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures. Wiley, Hoboken (2013)MATH
2.
Zurück zum Zitat Hong, D.F., Ren, G.X.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91–106 (2011)MathSciNetCrossRef Hong, D.F., Ren, G.X.: A modeling of sliding joint on one-dimensional flexible medium. Multibody Syst. Dyn. 26(1), 91–106 (2011)MathSciNetCrossRef
3.
Zurück zum Zitat Liu, J.P., Cheng, Z.B., Ren, G.X.: An Arbitrary Lagrangian–Eulerian formulation of a geometrically exact timoshenko beam running through a tube. Acta Mech. 229(8), 3161–3188 (2018)MathSciNetCrossRef Liu, J.P., Cheng, Z.B., Ren, G.X.: An Arbitrary Lagrangian–Eulerian formulation of a geometrically exact timoshenko beam running through a tube. Acta Mech. 229(8), 3161–3188 (2018)MathSciNetCrossRef
4.
Zurück zum Zitat Vetyukov, Y.: Non-material finite element modelling of large vibrations of axially moving strings and beams. J. Sound Vib. 414, 299–317 (2018)CrossRef Vetyukov, Y.: Non-material finite element modelling of large vibrations of axially moving strings and beams. J. Sound Vib. 414, 299–317 (2018)CrossRef
5.
Zurück zum Zitat Escalona, J.L.: An Arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112, 1–21 (2017)CrossRef Escalona, J.L.: An Arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112, 1–21 (2017)CrossRef
6.
Zurück zum Zitat Peng, Y., Zhao, Z.H., Zhou, M., He, J.W., Yang, J.G., Xiao, Y.: Flexible multibody model and the dynamics of the deployment of mesh antennas. J. Guid. Control Dyn. 40(6), 1499–1510 (2017)CrossRef Peng, Y., Zhao, Z.H., Zhou, M., He, J.W., Yang, J.G., Xiao, Y.: Flexible multibody model and the dynamics of the deployment of mesh antennas. J. Guid. Control Dyn. 40(6), 1499–1510 (2017)CrossRef
7.
Zurück zum Zitat Qi, Z.H., Wang, J., Wang, G.: An efficient model for dynamic analysis and simulation of cable-pulley systems with time-varying cable lengths. Mech. Mach. Theory 116, 383–403 (2017)CrossRef Qi, Z.H., Wang, J., Wang, G.: An efficient model for dynamic analysis and simulation of cable-pulley systems with time-varying cable lengths. Mech. Mach. Theory 116, 383–403 (2017)CrossRef
8.
Zurück zum Zitat Hyldahl, P., Mikkola, A., Balling, O.: A thin plate element based on the combined arbitrary Lagrange–Euler and absolute nodal coordinate formulations. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 227(3), 211–219 (2013) Hyldahl, P., Mikkola, A., Balling, O.: A thin plate element based on the combined arbitrary Lagrange–Euler and absolute nodal coordinate formulations. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 227(3), 211–219 (2013)
9.
Zurück zum Zitat Vetyukov, Y., Gruber, P., Krommer, M.: Nonlinear model of an axially moving plate in a mixed Eulerian–Lagrangian framework. Acta Mech. 227(10), 2831–2842 (2016)MathSciNetCrossRef Vetyukov, Y., Gruber, P., Krommer, M.: Nonlinear model of an axially moving plate in a mixed Eulerian–Lagrangian framework. Acta Mech. 227(10), 2831–2842 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat Vetyukov, Y., Gruber, P., Krommer, M., Gerstmayr, J., Gafur, I., Winter, G.: Mixed Eulerian–Lagrangian description in materials processing: deformation of a metal sheet in a rolling mill. Int. J. Numer. Methods Eng. 109(10), 1371–1390 (2017)MathSciNetCrossRef Vetyukov, Y., Gruber, P., Krommer, M., Gerstmayr, J., Gafur, I., Winter, G.: Mixed Eulerian–Lagrangian description in materials processing: deformation of a metal sheet in a rolling mill. Int. J. Numer. Methods Eng. 109(10), 1371–1390 (2017)MathSciNetCrossRef
11.
Zurück zum Zitat Kazemi, O., Ribaric, A.P., Nikravesh, P.E., Kim, S.: Non-rolling mesh for a rolling finite-element tire model. J. Mech. Sci. Technol. 29(7), 2615–2622 (2015)CrossRef Kazemi, O., Ribaric, A.P., Nikravesh, P.E., Kim, S.: Non-rolling mesh for a rolling finite-element tire model. J. Mech. Sci. Technol. 29(7), 2615–2622 (2015)CrossRef
12.
Zurück zum Zitat Liu, J.P., Shu, X.B., Kanazawa, H., Imaoka, K., Mikkola, A., Ren, G.X.: A model order reduction method for the simulation of gear contacts based on Arbitrary Lagrangian Eulerian formulation. Comput. Methods Appl. Mech. Eng. 338, 68–96 (2018)MathSciNetCrossRef Liu, J.P., Shu, X.B., Kanazawa, H., Imaoka, K., Mikkola, A., Ren, G.X.: A model order reduction method for the simulation of gear contacts based on Arbitrary Lagrangian Eulerian formulation. Comput. Methods Appl. Mech. Eng. 338, 68–96 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat Liu, J.P., Shu, X.B., Mikkola, A., Ren, G.X.: A model order reduction method for the simulation of rolling bearing based on Arbitrary Lagrangian–Eulerian formulation. In: ECCOMAS Thematic Conference on Multibody Dynamics (2019) Liu, J.P., Shu, X.B., Mikkola, A., Ren, G.X.: A model order reduction method for the simulation of rolling bearing based on Arbitrary Lagrangian–Eulerian formulation. In: ECCOMAS Thematic Conference on Multibody Dynamics (2019)
14.
Zurück zum Zitat Nackenhorst, U.: The ALE-formulation of bodies in rolling contact: theoretical foundations and finite element approach. Comput. Methods Appl. Mech. Eng. 193(39–41), 4299–4322 (2004)MathSciNetCrossRef Nackenhorst, U.: The ALE-formulation of bodies in rolling contact: theoretical foundations and finite element approach. Comput. Methods Appl. Mech. Eng. 193(39–41), 4299–4322 (2004)MathSciNetCrossRef
15.
Zurück zum Zitat Wollny, I., Sun, W., Kaliske, M.: A hierarchical sequential ALE poromechanics model for tire-soil-water interaction on fluid-infiltrated roads. Int. J. Numer. Methods Eng. 112(8), 909–938 (2017)MathSciNetCrossRef Wollny, I., Sun, W., Kaliske, M.: A hierarchical sequential ALE poromechanics model for tire-soil-water interaction on fluid-infiltrated roads. Int. J. Numer. Methods Eng. 112(8), 909–938 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat Pechstein, A., Gerstmayr, J.: A Lagrange–Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 30(3), 343–358 (2013)MathSciNetCrossRef Pechstein, A., Gerstmayr, J.: A Lagrange–Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 30(3), 343–358 (2013)MathSciNetCrossRef
17.
Zurück zum Zitat Shen, W., Zhao, Z., Ren, G., Liu, J.: Modeling and simulation of arresting gear system with multibody dynamic approach. Mathematical Problems in Engineering (2013) Shen, W., Zhao, Z., Ren, G., Liu, J.: Modeling and simulation of arresting gear system with multibody dynamic approach. Mathematical Problems in Engineering (2013)
18.
Zurück zum Zitat Liu, J.W., Liu, J.P., Shu, X.B., Mikkola, A., Ren, G.X.: An efficient multibody dynamic model of three-dimensional meshing contacts in helical gear-shaft system and its solution. Mech. Mach. Theory 142, 1–25 (2019) CrossRef Liu, J.W., Liu, J.P., Shu, X.B., Mikkola, A., Ren, G.X.: An efficient multibody dynamic model of three-dimensional meshing contacts in helical gear-shaft system and its solution. Mech. Mach. Theory 142, 1–25 (2019) CrossRef
19.
Zurück zum Zitat Chen, K.D., Chen, J.Q., Hong, D.F., Zhong, X.Y., Cheng, Z.B., Lu, Q.H., Liu, J.P., Zhao, Z.H., Ren, G.X.: Efficient and high-fidelity steering ability prediction of a slender drilling assembly. Acta Mech. 230(11), 3963–3988 (2019)CrossRef Chen, K.D., Chen, J.Q., Hong, D.F., Zhong, X.Y., Cheng, Z.B., Lu, Q.H., Liu, J.P., Zhao, Z.H., Ren, G.X.: Efficient and high-fidelity steering ability prediction of a slender drilling assembly. Acta Mech. 230(11), 3963–3988 (2019)CrossRef
20.
Zurück zum Zitat Irschik, H., Holl, H.: The equations of Lagrange written for a non-material volume. Acta Mech. 153(3–4), 231–248 (2002)CrossRef Irschik, H., Holl, H.: The equations of Lagrange written for a non-material volume. Acta Mech. 153(3–4), 231–248 (2002)CrossRef
21.
Zurück zum Zitat Escalona, J.L., Orzechowski, G., Mikkola, A.M.: Flexible multibody modeling of reeving systems including transverse vibrations. Multibody Syst. Dyn. 44(2), 107–133 (2018)MathSciNetCrossRef Escalona, J.L., Orzechowski, G., Mikkola, A.M.: Flexible multibody modeling of reeving systems including transverse vibrations. Multibody Syst. Dyn. 44(2), 107–133 (2018)MathSciNetCrossRef
22.
Zurück zum Zitat Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Hoboken (2001) Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Hoboken (2001)
23.
Zurück zum Zitat Yang, C., Cao, D., Zhao, Z., Zhang, Z., Ren, G.: A direct eigen analysis of multibody system in equilibrium. J. Appl. Math. (2012) Yang, C., Cao, D., Zhao, Z., Zhang, Z., Ren, G.: A direct eigen analysis of multibody system in equilibrium. J. Appl. Math. (2012)
24.
Zurück zum Zitat Schiehlen, W., Eberhard, P.: Applied Dynamics, vol. 57. Springer, Berlin (2014)MATH Schiehlen, W., Eberhard, P.: Applied Dynamics, vol. 57. Springer, Berlin (2014)MATH
25.
Zurück zum Zitat Benacquista, M.J., Romano, J.D.: Classical Mechanics. Springer, Berlin (2018)CrossRef Benacquista, M.J., Romano, J.D.: Classical Mechanics. Springer, Berlin (2018)CrossRef
26.
Zurück zum Zitat Balazs, N.L.: On the solution of the wave equation with moving boundaries. J. Math. Anal. Appl. 3(3), 472–484 (1961)CrossRef Balazs, N.L.: On the solution of the wave equation with moving boundaries. J. Math. Anal. Appl. 3(3), 472–484 (1961)CrossRef
Metadaten
Titel
Equivalence of Lagrange’s equations for non-material volume and the principle of virtual work in ALE formulation
verfasst von
Kai-Dong Chen
Jia-Peng Liu
Jia-Qi Chen
Xiao-Yu Zhong
Aki Mikkola
Qiu-Hai Lu
Ge-Xue Ren
Publikationsdatum
17.12.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02576-8

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.