Skip to main content
Erschienen in: Acta Mechanica 3/2020

14.12.2019 | Original Paper

Geometry and charging rate sensitively modulate surface stress-induced stress relaxation within cylindrical silicon anode particles in lithium-ion batteries

verfasst von: Amrita Sengupta, Jeevanjyoti Chakraborty

Erschienen in: Acta Mechanica | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface effects, in general, and surface stresses, in particular, become increasingly important while venturing into the realm of nanoscale particles. A fundamental framework is developed, as a generalization of a small-deformation surface mechanics theory, to derive the surface stresses accompanying the huge volumetric changes of a cylindrical silicon nanoparticle in a lithium-ion battery under charging conditions. When embedded within a finite deformation, chemo-mechanical model for silicon anode particles, this framework illustrates how surface stresses render a relaxing effect on the diffusion-induced stresses. Importantly, the extent of this relaxation is sensitively modulated by the initial size of the anode particles and lithium influx rate. Surface stress-induced stress relaxation increases with increase in the level of influx rate and with decrease in the radius of curvature of the Si particle. In addition to this, the surface stresses also regulate the extent of plastic deformation of the particles. It is demonstrated that these effects further depend upon additional geometric considerations of whether the cylindrical particle is free to grow in the axial direction or is axially constrained. It is expected that this framework, targetted at nanoscale cylindrical particles, will provide a platform to carry out future investigations into various issues that are critically important for battery design.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Beaulieu, L., Eberman, K., Turner, R., Krause, L., Dahn, J.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4(9), A137 (2001)CrossRef Beaulieu, L., Eberman, K., Turner, R., Krause, L., Dahn, J.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4(9), A137 (2001)CrossRef
2.
Zurück zum Zitat Wang, H., Jang, Y.I., Huang, B., Sadoway, D.R., Chiang, Y.M.: TEM study of electrochemical cycling-induced damage and disorder in LiCoO\(_2\) cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146(2), 473 (1999)CrossRef Wang, H., Jang, Y.I., Huang, B., Sadoway, D.R., Chiang, Y.M.: TEM study of electrochemical cycling-induced damage and disorder in LiCoO\(_2\) cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146(2), 473 (1999)CrossRef
3.
Zurück zum Zitat Chakraborty, J., Please, C.P., Goriely, A., Chapman, S.J.: Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. Int. J. Solids Struct. 54, 66 (2015)CrossRef Chakraborty, J., Please, C.P., Goriely, A., Chapman, S.J.: Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. Int. J. Solids Struct. 54, 66 (2015)CrossRef
6.
Zurück zum Zitat Zhang, K., Li, Y., Wu, J., Zheng, B., Yang, F.: Lithiation-induced buckling of wire-based electrodes in lithium-ion batteries: a phase-field model coupled with large deformation. Int. J. Solids Struct. 144, 289 (2018)CrossRef Zhang, K., Li, Y., Wu, J., Zheng, B., Yang, F.: Lithiation-induced buckling of wire-based electrodes in lithium-ion batteries: a phase-field model coupled with large deformation. Int. J. Solids Struct. 144, 289 (2018)CrossRef
7.
Zurück zum Zitat Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries: materials for clean energy. Nature 414(6861), 359 (2001)CrossRef Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries: materials for clean energy. Nature 414(6861), 359 (2001)CrossRef
8.
Zurück zum Zitat Miehe, C., Dal, H., Schänzel, L.M., Raina, A.: A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int. J. Numer. Methods Eng. 106(9), 683 (2016)CrossRefMathSciNetMATH Miehe, C., Dal, H., Schänzel, L.M., Raina, A.: A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int. J. Numer. Methods Eng. 106(9), 683 (2016)CrossRefMathSciNetMATH
9.
Zurück zum Zitat Müller, S., Pietsch, P., Brandt, B.E., Baade, P., De Andrade, V., De Carlo, F., Wood, V.: Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging. Nat. Commun. 9(1), 2340 (2018)CrossRef Müller, S., Pietsch, P., Brandt, B.E., Baade, P., De Andrade, V., De Carlo, F., Wood, V.: Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging. Nat. Commun. 9(1), 2340 (2018)CrossRef
10.
Zurück zum Zitat Xu, C., Weng, L., Ji, L., Zhou, J.: An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation. Eur. J. Mech.-A/Solids 73, 47 (2019)CrossRefMathSciNetMATH Xu, C., Weng, L., Ji, L., Zhou, J.: An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation. Eur. J. Mech.-A/Solids 73, 47 (2019)CrossRefMathSciNetMATH
11.
Zurück zum Zitat Kasavajjula, U., Wang, C., Appleby, A.J.: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163(2), 1003 (2007)CrossRef Kasavajjula, U., Wang, C., Appleby, A.J.: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163(2), 1003 (2007)CrossRef
12.
Zurück zum Zitat Ebner, M., Marone, F., Stampanoni, M., Wood, V.: Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342(6159), 716 (2013)CrossRef Ebner, M., Marone, F., Stampanoni, M., Wood, V.: Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342(6159), 716 (2013)CrossRef
13.
Zurück zum Zitat Wu, H., Xie, Z., Wang, Y., Lu, C., Ma, Z.: Modeling diffusion-induced stress on two-phase lithiation in lithium-ion batteries. Eur. J. Mech.-A/Solids 71, 320 (2018)CrossRefMathSciNetMATH Wu, H., Xie, Z., Wang, Y., Lu, C., Ma, Z.: Modeling diffusion-induced stress on two-phase lithiation in lithium-ion batteries. Eur. J. Mech.-A/Solids 71, 320 (2018)CrossRefMathSciNetMATH
14.
Zurück zum Zitat Ozanam, F., Rosso, M.: Silicon as anode material for Li-ion batteries. Mater. Sci. Eng. B 213, 2 (2016)CrossRef Ozanam, F., Rosso, M.: Silicon as anode material for Li-ion batteries. Mater. Sci. Eng. B 213, 2 (2016)CrossRef
15.
Zurück zum Zitat Ko, M., Chae, S., Cho, J.: Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2(11), 1645 (2015)CrossRef Ko, M., Chae, S., Cho, J.: Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2(11), 1645 (2015)CrossRef
16.
Zurück zum Zitat Srivastav, S., Xu, C., Edström, K., Gustafsson, T., Brandell, D.: Modelling the morphological background to capacity fade in Si-based lithium-ion batteries. Electrochim. Acta 258, 755 (2017)CrossRef Srivastav, S., Xu, C., Edström, K., Gustafsson, T., Brandell, D.: Modelling the morphological background to capacity fade in Si-based lithium-ion batteries. Electrochim. Acta 258, 755 (2017)CrossRef
17.
Zurück zum Zitat Xu, J., Deshpande, R.D., Pan, J., Cheng, Y.T., Battaglia, V.S.: Electrode side reactions, capacity loss and mechanical degradation in lithium-ion batteries. J. Electrochem. Soc. 162(10), A2026 (2015)CrossRef Xu, J., Deshpande, R.D., Pan, J., Cheng, Y.T., Battaglia, V.S.: Electrode side reactions, capacity loss and mechanical degradation in lithium-ion batteries. J. Electrochem. Soc. 162(10), A2026 (2015)CrossRef
18.
Zurück zum Zitat Kabir, M., Demirocak, D.E.: Degradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res. 41(14), 1963 (2017)CrossRef Kabir, M., Demirocak, D.E.: Degradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res. 41(14), 1963 (2017)CrossRef
19.
Zurück zum Zitat Perassi, E.M., Leiva, E.P.: Capacity fading model for a solid electrolyte interface with surface growth. Electrochim. Acta 308, 418–425 (2019)CrossRef Perassi, E.M., Leiva, E.P.: Capacity fading model for a solid electrolyte interface with surface growth. Electrochim. Acta 308, 418–425 (2019)CrossRef
20.
Zurück zum Zitat Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366 (2005)CrossRef Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366 (2005)CrossRef
21.
Zurück zum Zitat Lewis, R., Timmons, A., Mar, R., Dahn, J.: In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium. J. Electrochem. Soc. 154(3), A213 (2007)CrossRef Lewis, R., Timmons, A., Mar, R., Dahn, J.: In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium. J. Electrochem. Soc. 154(3), A213 (2007)CrossRef
22.
Zurück zum Zitat Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31 (2008)CrossRef Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31 (2008)CrossRef
23.
Zurück zum Zitat Graetz, J., Ahn, C., Yazami, R., Fultz, B.: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6(9), A194 (2003)CrossRef Graetz, J., Ahn, C., Yazami, R., Fultz, B.: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6(9), A194 (2003)CrossRef
24.
Zurück zum Zitat Xie, Y., Qiu, M., Gao, X., Guan, D., Yuan, C.: Phase field modeling of silicon nanowire based lithium ion battery composite electrode. Electrochim. Acta 186, 542 (2015)CrossRef Xie, Y., Qiu, M., Gao, X., Guan, D., Yuan, C.: Phase field modeling of silicon nanowire based lithium ion battery composite electrode. Electrochim. Acta 186, 542 (2015)CrossRef
25.
Zurück zum Zitat Lai, S.Y., Preston, T.J., Skare, M.O., Klette, H., Knudsen, K.D., Mæhlen, J.P., Koposov, A.Y.: In: Meeting Abstracts, vol. 2, pp. 176–176. The Electrochemical Society (2019) Lai, S.Y., Preston, T.J., Skare, M.O., Klette, H., Knudsen, K.D., Mæhlen, J.P., Koposov, A.Y.: In: Meeting Abstracts, vol. 2, pp. 176–176. The Electrochemical Society (2019)
27.
Zurück zum Zitat Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: In: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 187–191. World Scientific (2011) Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: In: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 187–191. World Scientific (2011)
28.
Zurück zum Zitat Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1. Longmans, Green and Company, Harlow (1906)MATH Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1. Longmans, Green and Company, Harlow (1906)MATH
29.
Zurück zum Zitat Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. Lond. Sect. A 63(5), 444 (1950)CrossRef Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. Lond. Sect. A 63(5), 444 (1950)CrossRef
30.
31.
Zurück zum Zitat Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431 (1978)CrossRefMATH Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431 (1978)CrossRefMATH
32.
Zurück zum Zitat Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRef Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRef
33.
Zurück zum Zitat Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1 (1994)CrossRef Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1 (1994)CrossRef
34.
Zurück zum Zitat Papastavrou, A., Steinmann, P., Kuhl, E.: On the mechanics of continua with boundary energies and growing surfaces. J. Mech. Phys. Solids 61(6), 1446 (2013)CrossRefMathSciNet Papastavrou, A., Steinmann, P., Kuhl, E.: On the mechanics of continua with boundary energies and growing surfaces. J. Mech. Phys. Solids 61(6), 1446 (2013)CrossRefMathSciNet
35.
Zurück zum Zitat McBride, A., Javili, A., Steinmann, P., Bargmann, S.: Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J. Mech. Phys. Solids 59(10), 2116 (2011)CrossRefMathSciNetMATH McBride, A., Javili, A., Steinmann, P., Bargmann, S.: Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J. Mech. Phys. Solids 59(10), 2116 (2011)CrossRefMathSciNetMATH
36.
Zurück zum Zitat Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535 (2003)CrossRef Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535 (2003)CrossRef
37.
Zurück zum Zitat Cheng, Y.T., Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104(8), 083521 (2008)CrossRef Cheng, Y.T., Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104(8), 083521 (2008)CrossRef
38.
Zurück zum Zitat Yang, F.: Insertion-induced breakage of materials. J. Appl. Phys. 108(7), 073536 (2010)CrossRef Yang, F.: Insertion-induced breakage of materials. J. Appl. Phys. 108(7), 073536 (2010)CrossRef
39.
Zurück zum Zitat Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195(15), 5081 (2010)CrossRef Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195(15), 5081 (2010)CrossRef
40.
Zurück zum Zitat Hao, F., Gao, X., Fang, D.: Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: the effects of surface stress. J. Appl. Phys. 112(10), 103507 (2012)CrossRef Hao, F., Gao, X., Fang, D.: Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: the effects of surface stress. J. Appl. Phys. 112(10), 103507 (2012)CrossRef
41.
Zurück zum Zitat Liu, Y., Lv, P., Ma, J., Bai, R., Duan, H.L.: in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, p. 20140299. The Royal Society (2014) Liu, Y., Lv, P., Ma, J., Bai, R., Duan, H.L.: in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, p. 20140299. The Royal Society (2014)
42.
Zurück zum Zitat Gao, X., Huang, Z., Qu, J., Fang, D.: A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (I) general theory. J. Mech. Phys. Solids 66, 59 (2014)CrossRefMathSciNetMATH Gao, X., Huang, Z., Qu, J., Fang, D.: A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials: (I) general theory. J. Mech. Phys. Solids 66, 59 (2014)CrossRefMathSciNetMATH
43.
Zurück zum Zitat Gao, X., Fang, D., Qu, J.: A chemo-mechanics framework for elastic solids with surface stress. Proc. R. Soc. A 471(2182), 20150366 (2015)CrossRef Gao, X., Fang, D., Qu, J.: A chemo-mechanics framework for elastic solids with surface stress. Proc. R. Soc. A 471(2182), 20150366 (2015)CrossRef
44.
Zurück zum Zitat Dingreville, R., Qu, J.: Interfacial excess energy, excess stress and excess strain in elastic solids: planar interfaces. J. Mech. Phys. Solids 56(5), 1944 (2008)CrossRefMathSciNetMATH Dingreville, R., Qu, J.: Interfacial excess energy, excess stress and excess strain in elastic solids: planar interfaces. J. Mech. Phys. Solids 56(5), 1944 (2008)CrossRefMathSciNetMATH
45.
Zurück zum Zitat Swaminathan, N., Qu, J., Sun, Y.: An electrochemomechanical theory of defects in ionic solids. I. Theory Philos. Mag. 87(11), 1705 (2007)CrossRef Swaminathan, N., Qu, J., Sun, Y.: An electrochemomechanical theory of defects in ionic solids. I. Theory Philos. Mag. 87(11), 1705 (2007)CrossRef
46.
Zurück zum Zitat Stein, P., Zhao, Y., Xu, B.X.: Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles. J. Power Sources 332, 154 (2016)CrossRef Stein, P., Zhao, Y., Xu, B.X.: Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles. J. Power Sources 332, 154 (2016)CrossRef
47.
48.
Zurück zum Zitat Lu, Y., Zhang, P., Wang, F., Zhang, K., Zhao, X.: Reaction-diffusion-stress coupling model for Li-ion batteries: the role of surface effects on electrochemical performance. Electrochim. Acta 274, 359 (2018)CrossRef Lu, Y., Zhang, P., Wang, F., Zhang, K., Zhao, X.: Reaction-diffusion-stress coupling model for Li-ion batteries: the role of surface effects on electrochemical performance. Electrochim. Acta 274, 359 (2018)CrossRef
49.
Zurück zum Zitat Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280 (2012)CrossRefMathSciNet Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280 (2012)CrossRefMathSciNet
50.
Zurück zum Zitat Anand, L.: A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J. Mech. Phys. Solids 60(12), 1983 (2012)CrossRefMathSciNetMATH Anand, L.: A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J. Mech. Phys. Solids 60(12), 1983 (2012)CrossRefMathSciNetMATH
51.
Zurück zum Zitat Appiah, W.A., Park, J., Byun, S., Cho, I., Mozer, A., Ryou, M.H., Lee, Y.M.: J. Power Sources 407, 153 (2018) CrossRef Appiah, W.A., Park, J., Byun, S., Cho, I., Mozer, A., Ryou, M.H., Lee, Y.M.: J. Power Sources 407, 153 (2018) CrossRef
52.
Zurück zum Zitat Dal, H., Miehe, C.: Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains. Comput. Mech. 55(2), 303 (2015)CrossRefMathSciNetMATH Dal, H., Miehe, C.: Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains. Comput. Mech. 55(2), 303 (2015)CrossRefMathSciNetMATH
53.
Zurück zum Zitat Zhao, Y., Stein, P., Bai, Y., Al-Siraj, M., Yang, Y., Xu, B.X.: A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Sources 413, 259 (2019)CrossRef Zhao, Y., Stein, P., Bai, Y., Al-Siraj, M., Yang, Y., Xu, B.X.: A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Sources 413, 259 (2019)CrossRef
54.
Zurück zum Zitat Dora, J., Sengupta, A., Ghosh, S., Yedla, N., Chakraborty, J.: J. Solid State Electrochem. 23, 2331 (2019) Dora, J., Sengupta, A., Ghosh, S., Yedla, N., Chakraborty, J.: J. Solid State Electrochem. 23, 2331 (2019)
55.
Zurück zum Zitat Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., et al.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312 (2011)CrossRef Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., et al.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312 (2011)CrossRef
56.
Zurück zum Zitat Rhodes, K., Dudney, N., Lara-Curzio, E., Daniel, C.: Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission. J. Electrochem. Soc. 157(12), A1354 (2010)CrossRef Rhodes, K., Dudney, N., Lara-Curzio, E., Daniel, C.: Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission. J. Electrochem. Soc. 157(12), A1354 (2010)CrossRef
57.
Zurück zum Zitat Bower, A.F., Guduru, P.R., Sethuraman, V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59(4), 804 (2011)CrossRefMathSciNetMATH Bower, A.F., Guduru, P.R., Sethuraman, V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59(4), 804 (2011)CrossRefMathSciNetMATH
58.
Zurück zum Zitat Haftbaradaran, H., Song, J., Curtin, W., Gao, H.: Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J. Power Sources 196(1), 361 (2011)CrossRef Haftbaradaran, H., Song, J., Curtin, W., Gao, H.: Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J. Power Sources 196(1), 361 (2011)CrossRef
59.
Zurück zum Zitat Bucci, G., Nadimpalli, S.P., Sethuraman, V.A., Bower, A.F., Guduru, P.R.: Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. J. Mech. Phys. Solids 62, 276 (2014)CrossRef Bucci, G., Nadimpalli, S.P., Sethuraman, V.A., Bower, A.F., Guduru, P.R.: Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. J. Mech. Phys. Solids 62, 276 (2014)CrossRef
60.
Zurück zum Zitat Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455 (1994)CrossRef Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455 (1994)CrossRef
61.
Zurück zum Zitat Huang, Z., Wang, J.X.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182(3–4), 195 (2006)CrossRefMATH Huang, Z., Wang, J.X.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182(3–4), 195 (2006)CrossRefMATH
Metadaten
Titel
Geometry and charging rate sensitively modulate surface stress-induced stress relaxation within cylindrical silicon anode particles in lithium-ion batteries
verfasst von
Amrita Sengupta
Jeevanjyoti Chakraborty
Publikationsdatum
14.12.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02550-4

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.