Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 4/2024

27.04.2023

A novel 2.5D machining feature recognition method based on ray blanking algorithm

verfasst von: Peng Shi, Xiaomeng Tong, Maolin Cai, Shuai Niu

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Feature recognition (FR) is one of the main tasks involved in computer-aided design, computer aided process planning, and computer-aided manufacturing systems. Conventional FR methods have topology, voxel, and pixel as model input data, which are rule-based, body decomposition-based, and neural network-based, respectively. However, FR methods are mostly applied to identify geometric features and are rarely manufacturing oriented. Recognizable feature types depend on the establishment of a feature database, which can easily lead to complex FR errors or omissions. This study proposes a novel recognition method for the general machining feature of 2.5-axis, one of the basic and commonly encountered feature types in manufacture industries. A novel ray fading algorithm is proposed to calculate the feature machining direction, and the type of 2.5-axis machining features is determined by both machining direction and topology. Features with machining directions can effectively assist the intelligent process planning to reduce the clamping changes and can potentially lead to significant time reduction for part machining.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bærentzen, J. A., Nielsen, S. L., Gjøl, M., & Larsen, B. D. (2008). Two methods for antialiased wireframe drawing with hidden line removal. In Proceedings of the 24th spring conference on computer graphics (pp. 171–177). Bærentzen, J. A., Nielsen, S. L., Gjøl, M., & Larsen, B. D. (2008). Two methods for antialiased wireframe drawing with hidden line removal. In Proceedings of the 24th spring conference on computer graphics (pp. 171–177).
Zurück zum Zitat Dévai, F. (2011). An optimal hidden-surface algorithm and its parallelization. In International conference on computational science and its applications (pp. 17–29). Springer. Dévai, F. (2011). An optimal hidden-surface algorithm and its parallelization. In International conference on computational science and its applications (pp. 17–29). Springer.
Zurück zum Zitat Doytsher, Y., & Hall, J. K. (2001). Simplified algorithms for isometric and perspective projections with hidden line removal. Computers & Geosciences, 27(1), 77–83.CrossRef Doytsher, Y., & Hall, J. K. (2001). Simplified algorithms for isometric and perspective projections with hidden line removal. Computers & Geosciences, 27(1), 77–83.CrossRef
Zurück zum Zitat Duan, J., Tang, Y. Y., Guo, C. Y., Fang, C., & Hu, X. C. (2013). Boundary expansion: An hidden surface removal method based on boundary detection for discrete points. In 2013 International conference on wavelet analysis and pattern recognition (pp. 110–114). IEEE. Duan, J., Tang, Y. Y., Guo, C. Y., Fang, C., & Hu, X. C. (2013). Boundary expansion: An hidden surface removal method based on boundary detection for discrete points. In 2013 International conference on wavelet analysis and pattern recognition (pp. 110–114). IEEE.
Zurück zum Zitat Gao, S., & Shah, J. J. (1998). Automatic recognition of interacting machining features based on minimal condition subgraph. Computer-Aided Design, 30(9), 727–739.CrossRef Gao, S., & Shah, J. J. (1998). Automatic recognition of interacting machining features based on minimal condition subgraph. Computer-Aided Design, 30(9), 727–739.CrossRef
Zurück zum Zitat Ghadai, S., Balu, A., Sarkar, S., Krishnamurthy, A. (2018). Learning localized features in 3D CAD models for manufacturability analysis of drilled holes. Computer Aided Geometric Design, 62, 263–275.CrossRef Ghadai, S., Balu, A., Sarkar, S., Krishnamurthy, A. (2018). Learning localized features in 3D CAD models for manufacturability analysis of drilled holes. Computer Aided Geometric Design, 62, 263–275.CrossRef
Zurück zum Zitat Goodrich, M. T. (1992). A polygonal approach to hidden-line and hidden-surface elimination. (CVGIP): Graphical Models and Image Processing, 54(1), 1–12. Goodrich, M. T. (1992). A polygonal approach to hidden-line and hidden-surface elimination. (CVGIP): Graphical Models and Image Processing, 54(1), 1–12.
Zurück zum Zitat Grayer, A. (1977). The automatic production of machined components starting from a stored geometric description. Advances in Computer Aided Manufacture, 137. Grayer, A. (1977). The automatic production of machined components starting from a stored geometric description. Advances in Computer Aided Manufacture, 137.
Zurück zum Zitat Guan, X., Meng, G., & Yuan, X. (2010). Machining feature recognition of part from STEP file based on ANN. International Conference on Computer, Mechatronics, Control and Electronic Engineering, 1, 54–57. Guan, X., Meng, G., & Yuan, X. (2010). Machining feature recognition of part from STEP file based on ANN. International Conference on Computer, Mechatronics, Control and Electronic Engineering, 1, 54–57.
Zurück zum Zitat Hamlin, J. R. G., & Gear, C. W. (1977). Raster-scan hidden surface algorithm techniques. ACM SIGGRAPH Computer Graphics, 11(2), 206–213.CrossRef Hamlin, J. R. G., & Gear, C. W. (1977). Raster-scan hidden surface algorithm techniques. ACM SIGGRAPH Computer Graphics, 11(2), 206–213.CrossRef
Zurück zum Zitat Han, J., Pratt, M., & Regli, W. C. (2000). Manufacturing feature recognition from solid models: A status report. IEEE Transactions on Robotics and Automation, 16(6), 782–796.CrossRef Han, J., Pratt, M., & Regli, W. C. (2000). Manufacturing feature recognition from solid models: A status report. IEEE Transactions on Robotics and Automation, 16(6), 782–796.CrossRef
Zurück zum Zitat Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-Pour, H. (2020). MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality. Expert Systems with Applications, 142, 113024.CrossRef Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-Pour, H. (2020). MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality. Expert Systems with Applications, 142, 113024.CrossRef
Zurück zum Zitat Henderson, M. R., Srinath, G., Stage, R., Walker, K., & Regli, W. (1994). Boundary representation-based feature identification. Manufacturing Research and Technology., 20, 15–38.CrossRef Henderson, M. R., Srinath, G., Stage, R., Walker, K., & Regli, W. (1994). Boundary representation-based feature identification. Manufacturing Research and Technology., 20, 15–38.CrossRef
Zurück zum Zitat Hwang, J.-L. (1991). Applying the perceptron to three-dimensional feature recognition. Arizona State University. Hwang, J.-L. (1991). Applying the perceptron to three-dimensional feature recognition. Arizona State University.
Zurück zum Zitat Jian, C., Li, M., Qiu, K., & Zhang, M. (2018). An improved NBA-based STEP design intention feature recognition. Future Generation Computer Systems, 88, 357–362.CrossRef Jian, C., Li, M., Qiu, K., & Zhang, M. (2018). An improved NBA-based STEP design intention feature recognition. Future Generation Computer Systems, 88, 357–362.CrossRef
Zurück zum Zitat Joshi, S., & Chang, T.-C. (1988). Graph-based heuristics for recognition of machined features from a 3D solid model. Computer-Aided Design, 20(2), 58–66.CrossRef Joshi, S., & Chang, T.-C. (1988). Graph-based heuristics for recognition of machined features from a 3D solid model. Computer-Aided Design, 20(2), 58–66.CrossRef
Zurück zum Zitat Kammaje, R. P., & Mora, B. (2007). A study of restricted BSP trees for ray tracing. In 2007 IEEE Symposium on interactive ray tracing (pp. 55–62). IEEE. Kammaje, R. P., & Mora, B. (2007). A study of restricted BSP trees for ray tracing. In 2007 IEEE Symposium on interactive ray tracing (pp. 55–62). IEEE.
Zurück zum Zitat Kammer, F., Löffler, M., & Silveira, R. I. (2016). Space-efficient hidden surface removal. arXiv preprint arXiv:161106915. Kammer, F., Löffler, M., & Silveira, R. I. (2016). Space-efficient hidden surface removal. arXiv preprint arXiv:161106915.
Zurück zum Zitat Saleh, N., Polos, R., & Khalil, A. A. (2006). Geometrical modeling using hidden line algorithm. TANMIYAT AL-RAFIDAIN, 28(84), 9–21.CrossRef Saleh, N., Polos, R., & Khalil, A. A. (2006). Geometrical modeling using hidden line algorithm. TANMIYAT AL-RAFIDAIN, 28(84), 9–21.CrossRef
Zurück zum Zitat Kitsios, N., & Tsakalidis, A. (1996). Space reduction and an extension for a hidden line elimination algorithm. Computational Geometry, 6(6), 397–404.CrossRef Kitsios, N., & Tsakalidis, A. (1996). Space reduction and an extension for a hidden line elimination algorithm. Computational Geometry, 6(6), 397–404.CrossRef
Zurück zum Zitat Li, H., Huang, Y., Sun, Y., & Chen, L. (2015). Hint-based generic shape feature recognition from three-dimensional B-rep models. Advances in Mechanical Engineering, 7(4), 1687814015582082.CrossRef Li, H., Huang, Y., Sun, Y., & Chen, L. (2015). Hint-based generic shape feature recognition from three-dimensional B-rep models. Advances in Mechanical Engineering, 7(4), 1687814015582082.CrossRef
Zurück zum Zitat Liu, X., Ni, Z., Cheng, Y., & Jiao L. (2010). Development of CAPP based on 2.5 D machining feature recognition. In 2010 2nd International conference on computer engineering and technology (Vol. 1, pp. V1-668). IEEE. Liu, X., Ni, Z., Cheng, Y., & Jiao L. (2010). Development of CAPP based on 2.5 D machining feature recognition. In 2010 2nd International conference on computer engineering and technology (Vol. 1, pp. V1-668). IEEE.
Zurück zum Zitat Ma, Y., Zhang, Y., & Luo, X. (2019). Automatic recognition of machining features based on point cloud data using convolution neural networks. In Proceedings of the 2019 international conference on artificial intelligence and computer science (pp. 229–235). Ma, Y., Zhang, Y., & Luo, X. (2019). Automatic recognition of machining features based on point cloud data using convolution neural networks. In Proceedings of the 2019 international conference on artificial intelligence and computer science (pp. 229–235).
Zurück zum Zitat Ning, F., Shi, Y., Cai, M., Xu, W. (2021). Part machining feature recognition based on a deep learning method. Journal of Intelligent Manufacturing, 34, 1–13. Ning, F., Shi, Y., Cai, M., Xu, W. (2021). Part machining feature recognition based on a deep learning method. Journal of Intelligent Manufacturing, 34, 1–13.
Zurück zum Zitat Okino, N., Kakazu, Y., & Morimoto, M. (1984). Extended depth-buffer algorithms for hidden-surface visualization. IEEE Computer Graphics and Applications, 4(5), 79–88.CrossRef Okino, N., Kakazu, Y., & Morimoto, M. (1984). Extended depth-buffer algorithms for hidden-surface visualization. IEEE Computer Graphics and Applications, 4(5), 79–88.CrossRef
Zurück zum Zitat Peddireddy, D., Fu, X., Shankar, A., Wang, H., Joung, B. G., Aggarwal, V., & Jun, M. B. G. (2021). Identifying manufacturability and machining processes using deep 3D convolutional networks. Journal of Manufacturing Processes, 64, 1336–1348.CrossRef Peddireddy, D., Fu, X., Shankar, A., Wang, H., Joung, B. G., Aggarwal, V., & Jun, M. B. G. (2021). Identifying manufacturability and machining processes using deep 3D convolutional networks. Journal of Manufacturing Processes, 64, 1336–1348.CrossRef
Zurück zum Zitat Plantinga, H., Seales, W. B., & Dyer, C. R. (1990). Real-time hidden-line elimination for a rotating scene. In Proceedings of graphics interface’90. Citeseer. Plantinga, H., Seales, W. B., & Dyer, C. R. (1990). Real-time hidden-line elimination for a rotating scene. In Proceedings of graphics interface’90. Citeseer.
Zurück zum Zitat Prabhakar, S., & Henderson, M. R. (1992). Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models. Computer-Aided Design, 24(7), 381–393.CrossRef Prabhakar, S., & Henderson, M. R. (1992). Automatic form-feature recognition using neural-network-based techniques on boundary representations of solid models. Computer-Aided Design, 24(7), 381–393.CrossRef
Zurück zum Zitat Rai, S., & Vairaktarakis, G. (2009). NP-complete problems and proof methodologyNP-complete problems and proof methodology[M/Rai2009]. In C. A. Floudas & P. M. Pardalos (Eds.), Encyclopedia of optimization (pp. 2675–2682). Springer. Rai, S., & Vairaktarakis, G. (2009). NP-complete problems and proof methodologyNP-complete problems and proof methodology[M/Rai2009]. In C. A. Floudas & P. M. Pardalos (Eds.), Encyclopedia of optimization (pp. 2675–2682). Springer.
Zurück zum Zitat Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X. (2020a). A novel learning-based feature recognition method using multiple sectional view representation. Journal of Intelligent Manufacturing, 31, 1–19.CrossRef Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X. (2020a). A novel learning-based feature recognition method using multiple sectional view representation. Journal of Intelligent Manufacturing, 31, 1–19.CrossRef
Zurück zum Zitat Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X. (2020b). Intersecting machining feature localization and recognition via single shot multibox detector. IEEE Transactions on Industrial Informatics, 17(5), 3292–3302.CrossRef Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X. (2020b). Intersecting machining feature localization and recognition via single shot multibox detector. IEEE Transactions on Industrial Informatics, 17(5), 3292–3302.CrossRef
Zurück zum Zitat Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X. (2022). Highly interacting machining feature recognition via small sample learning. Robotics and Computer-Integrated Manufacturing, 73, 102260.CrossRef Shi, P., Qi, Q., Qin, Y., Scott, P. J., & Jiang, X. (2022). Highly interacting machining feature recognition via small sample learning. Robotics and Computer-Integrated Manufacturing, 73, 102260.CrossRef
Zurück zum Zitat Song, J-W., Gwun, O-B., Kim, S-W., Kim, Y. G. (2004). A boundary surface based ray casting using 6-depth buffers. In International conference on computational and information science (pp. 1134–1140). Springer. Song, J-W., Gwun, O-B., Kim, S-W., Kim, Y. G. (2004). A boundary surface based ray casting using 6-depth buffers. In International conference on computational and information science (pp. 1134–1140). Springer.
Zurück zum Zitat Song, R., Zhang, J., & Li, X. (2011). The research and improvement of hidden-line elimination algorithm for convex polyhedron. In 2011 International conference on multimedia technology (pp. 5638–5641). IEEE. Song, R., Zhang, J., & Li, X. (2011). The research and improvement of hidden-line elimination algorithm for convex polyhedron. In 2011 International conference on multimedia technology (pp. 5638–5641). IEEE.
Zurück zum Zitat Tsakalidis, A., & Tsichlas, K. (2011). A space-optimal hidden surface removal algorithm for iso-oriented rectangles. arXiv preprint arXiv:11090389. Tsakalidis, A., & Tsichlas, K. (2011). A space-optimal hidden surface removal algorithm for iso-oriented rectangles. arXiv preprint arXiv:11090389.
Zurück zum Zitat Vandenbrande, J. H., & Requicha, A. A. (1993). Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12), 1269–1285.CrossRef Vandenbrande, J. H., & Requicha, A. A. (1993). Spatial reasoning for the automatic recognition of machinable features in solid models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12), 1269–1285.CrossRef
Zurück zum Zitat Venuvinod, P. K., & Wong, S. (1995). A graph-based expert system approach to geometric feature recognition. Journal of Intelligent Manufacturing, 6(3), 155–162.CrossRef Venuvinod, P. K., & Wong, S. (1995). A graph-based expert system approach to geometric feature recognition. Journal of Intelligent Manufacturing, 6(3), 155–162.CrossRef
Zurück zum Zitat Verma, A., & Rajotia, S. (2008). A hint-based machining feature recognition system for 2.5 D parts. International Journal of Production Research, 46(6), 1515–1537.CrossRef Verma, A., & Rajotia, S. (2008). A hint-based machining feature recognition system for 2.5 D parts. International Journal of Production Research, 46(6), 1515–1537.CrossRef
Zurück zum Zitat Verma, A. K., & Rajotia, S. (2009). A hybrid machining feature recognition system. International Journal of Manufacturing Research, 4(3), 343–361.CrossRef Verma, A. K., & Rajotia, S. (2009). A hybrid machining feature recognition system. International Journal of Manufacturing Research, 4(3), 343–361.CrossRef
Zurück zum Zitat Yamaguchi, T., & Yoshikawa, H. (2015). In Improved hidden surface removal method for computer-generated alcove hologram. In Practical holography XXIX: Materials and applications (Vol. 9386, p. 93860T). Yamaguchi, T., & Yoshikawa, H. (2015). In Improved hidden surface removal method for computer-generated alcove hologram. In Practical holography XXIX: Materials and applications (Vol. 9386, p. 93860T).
Zurück zum Zitat Zeng, Z., & Yan, H. (2001). Hidden line removal for 2D cartoon images. In Proceedings of the Pan-Sydney area workshop on visual information processing (Vol. 11, pp. 89–92). Zeng, Z., & Yan, H. (2001). Hidden line removal for 2D cartoon images. In Proceedings of the Pan-Sydney area workshop on visual information processing (Vol. 11, pp. 89–92).
Zurück zum Zitat Zhang, H., Zhang, S., Zhang, Y., Liang, J., & Wang, Z. (2022). Machining feature recognition based on a novel multi-task deep learning network. Robotics and Computer-Integrated Manufacturing, 77, 102369.CrossRef Zhang, H., Zhang, S., Zhang, Y., Liang, J., & Wang, Z. (2022). Machining feature recognition based on a novel multi-task deep learning network. Robotics and Computer-Integrated Manufacturing, 77, 102369.CrossRef
Zurück zum Zitat Zhang, X., Nassehi, A., & Newman, S. T. (2014). Feature recognition from CNC part programs for milling operations. The International Journal of Advanced Manufacturing Technology, 70(1–4), 397–412.CrossRef Zhang, X., Nassehi, A., & Newman, S. T. (2014). Feature recognition from CNC part programs for milling operations. The International Journal of Advanced Manufacturing Technology, 70(1–4), 397–412.CrossRef
Zurück zum Zitat Zhang, Z., Jaiswal, P., & Rai, R. (2018). FeatureNet: Machining feature recognition based on 3D convolution neural network. Computer-Aided Design, 101, 12–22.CrossRef Zhang, Z., Jaiswal, P., & Rai, R. (2018). FeatureNet: Machining feature recognition based on 3D convolution neural network. Computer-Aided Design, 101, 12–22.CrossRef
Zurück zum Zitat Zhu, J., Kato, M., Tanaka, T., Yoshioka, H., & Saito, Y. (2015). Graph based automatic process planning system for multi-tasking machine. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 9(3), JAMDSM0034–JAMDSM0034.CrossRef Zhu, J., Kato, M., Tanaka, T., Yoshioka, H., & Saito, Y. (2015). Graph based automatic process planning system for multi-tasking machine. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 9(3), JAMDSM0034–JAMDSM0034.CrossRef
Metadaten
Titel
A novel 2.5D machining feature recognition method based on ray blanking algorithm
verfasst von
Peng Shi
Xiaomeng Tong
Maolin Cai
Shuai Niu
Publikationsdatum
27.04.2023
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 4/2024
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-023-02122-3

Weitere Artikel der Ausgabe 4/2024

Journal of Intelligent Manufacturing 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.