Skip to main content
Erschienen in: Microsystem Technologies 5/2020

03.12.2019 | Technical Paper

A novel design and fabrication of a micro-gripper for manipulation of micro-scale parts actuated by a bending piezoelectric

verfasst von: Hossein Mehrabi, Mohsen Hamedi, Iman Aminzahed

Erschienen in: Microsystem Technologies | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a novel micro-gripper using a piezoelectric actuator was designed and improved by the design of experiments (DOE) approach. Using a bending PZT actuator connected to the micro-gripper by a rigid wedge can be considered as a novel approach in this field. Almost all of the similar grippers in this category were former actuated by a piezo-stack which has some limitations and difficulties like fabrication in MEMS proportions. The basic design was borrowed from compliant mechanisms that are suitable for MEMS application and easy to manufacture in micro-scale because of the intrinsic integration characteristic. Since stress concentration is common in flexure hinge compliant mechanisms, our focus was to consider strength as an important factor in our design. Finite element analysis tools were used to implement the DOE based on two criteria; minimizing stress concentration and maximizing the output displacement in the micro-gripper structure as much as possible with the consideration of the total size of the gripper. The experiment was performed to validate the simulation results and experiment results agreed well with the simulation one. The slight geometrical discrepancy in significant portions of structure like flexure hinges partially contributes to the accumulated error between the simulation and the experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aminzahed I, Zhang Y, Jabbari M (2016) Energy harvesting from a five-story building and investigation of frequency effect on output power. Int J Interactive Design Manuf (IJIDeM) 10:301–308CrossRef Aminzahed I, Zhang Y, Jabbari M (2016) Energy harvesting from a five-story building and investigation of frequency effect on output power. Int J Interactive Design Manuf (IJIDeM) 10:301–308CrossRef
Zurück zum Zitat Aminzahed I, Mashhadi MM, Sereshk MRV (2017a) Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator. Mater Sci Eng, C 71:685–689CrossRef Aminzahed I, Mashhadi MM, Sereshk MRV (2017a) Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator. Mater Sci Eng, C 71:685–689CrossRef
Zurück zum Zitat Aminzahed I, Mashhadi MM, Sereshk MRV (2017b) Influence of drawn radius in micro deep drawing process of rectangular work pieces via size dependent analysis using piezoelectric actuator. Int J Interactive Design Manuf (IJIDeM) 11:893–902CrossRef Aminzahed I, Mashhadi MM, Sereshk MRV (2017b) Influence of drawn radius in micro deep drawing process of rectangular work pieces via size dependent analysis using piezoelectric actuator. Int J Interactive Design Manuf (IJIDeM) 11:893–902CrossRef
Zurück zum Zitat Ando Y, Sawada H, Okazaki Y, Ishikawa Y, Kitahara T, Tatsue Y et al (1990) Development of micro grippers. In: Micro system technologies, vol 90. Springer, pp 844–849 Ando Y, Sawada H, Okazaki Y, Ishikawa Y, Kitahara T, Tatsue Y et al (1990) Development of micro grippers. In: Micro system technologies, vol 90. Springer, pp 844–849
Zurück zum Zitat Chan H-Y, Li WJ (2003) A thermally actuated polymer micro robotic gripper for manipulation of biological cells. In: 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), pp 288–293 Chan H-Y, Li WJ (2003) A thermally actuated polymer micro robotic gripper for manipulation of biological cells. In: 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), pp 288–293
Zurück zum Zitat Chen J, Qin Y, Yu A, Liu B (2003) Micro-experimental study for the stress effects on the interphase of composite materials. Opt Lasers Eng 39:473–478CrossRef Chen J, Qin Y, Yu A, Liu B (2003) Micro-experimental study for the stress effects on the interphase of composite materials. Opt Lasers Eng 39:473–478CrossRef
Zurück zum Zitat Gao P, Yao K, Tang X, He X, Shannigrahi S, Lou Y et al (2006) A piezoelectric micro-actuator with a three-dimensional structure and its micro-fabrication. Sens Actuators A Phys 130:491–496CrossRef Gao P, Yao K, Tang X, He X, Shannigrahi S, Lou Y et al (2006) A piezoelectric micro-actuator with a three-dimensional structure and its micro-fabrication. Sens Actuators A Phys 130:491–496CrossRef
Zurück zum Zitat Hsu C-C, Lu M-C, Wang W-Y, Lu Y-Y (2009) Distance measurement based on pixel variation of CCD images. ISA Trans 48:389–395CrossRef Hsu C-C, Lu M-C, Wang W-Y, Lu Y-Y (2009) Distance measurement based on pixel variation of CCD images. ISA Trans 48:389–395CrossRef
Zurück zum Zitat Jeon C-S, Park J-S, Lee S-Y, Moon C-W (2007) Fabrication and characteristics of out-of-plane piezoelectric micro grippers using MEMS processes. Thin Solid Films 515:4901–4904CrossRef Jeon C-S, Park J-S, Lee S-Y, Moon C-W (2007) Fabrication and characteristics of out-of-plane piezoelectric micro grippers using MEMS processes. Thin Solid Films 515:4901–4904CrossRef
Zurück zum Zitat Kaplan S, Cohen Y, Lewin D, Simon MB, Haber EA (2018) Piezo-electric actuators, ed: Google Patents, 2018 Kaplan S, Cohen Y, Lewin D, Simon MB, Haber EA (2018) Piezo-electric actuators, ed: Google Patents, 2018
Zurück zum Zitat Kohl M, Krevet B, Just E (2002) SMA microgripper system. Sens Actuators A Phys 97:646–652CrossRef Kohl M, Krevet B, Just E (2002) SMA microgripper system. Sens Actuators A Phys 97:646–652CrossRef
Zurück zum Zitat Kyung J, Ko B, Ha Y, Chung G (2008) Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges. Sens Actuators A Phys 141:144–150CrossRef Kyung J, Ko B, Ha Y, Chung G (2008) Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges. Sens Actuators A Phys 141:144–150CrossRef
Zurück zum Zitat Lee C-K, Law K-T, King NM, Rabie A-BM (2002) A comparison between a conventional optical method and image-analysis for measuring the unimpeded eruption rate of the rat mandibular incisor. Arch Oral Biol 47:555–562CrossRef Lee C-K, Law K-T, King NM, Rabie A-BM (2002) A comparison between a conventional optical method and image-analysis for measuring the unimpeded eruption rate of the rat mandibular incisor. Arch Oral Biol 47:555–562CrossRef
Zurück zum Zitat Li H, Dong B, Zhang Z, Zhang HF, Sun C (2014) A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci Rep 4:4496CrossRef Li H, Dong B, Zhang Z, Zhang HF, Sun C (2014) A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci Rep 4:4496CrossRef
Zurück zum Zitat Liang C, Wang F, Shi B, Huo Z, Zhou K, Tian Y et al (2018) Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens Actuators A Phys 269:227–237CrossRef Liang C, Wang F, Shi B, Huo Z, Zhou K, Tian Y et al (2018) Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens Actuators A Phys 269:227–237CrossRef
Zurück zum Zitat Lofroth M, Avci E (2019) Development of a novel modular compliant gripper for manipulation of micro objects. Micromachines 10:313CrossRef Lofroth M, Avci E (2019) Development of a novel modular compliant gripper for manipulation of micro objects. Micromachines 10:313CrossRef
Zurück zum Zitat Lutterotti L (2016) Ferroelectrics and piezoelectrics for MEMS Lutterotti L (2016) Ferroelectrics and piezoelectrics for MEMS
Zurück zum Zitat Mehrabi H, Aminzahed I (2019) Design and testing of a microgripper with SMA actuator for manipulation of micro components. Microsyst Technol 2018:1–6 Mehrabi H, Aminzahed I (2019) Design and testing of a microgripper with SMA actuator for manipulation of micro components. Microsyst Technol 2018:1–6
Zurück zum Zitat Millet O, Bernardoni P, Régnier S, Bidaud P, Tsitsiris E, Collard D et al (2004) Electrostatic actuated micro gripper using an amplification mechanism. Sens Actuators A Phys 114:371–378CrossRef Millet O, Bernardoni P, Régnier S, Bidaud P, Tsitsiris E, Collard D et al (2004) Electrostatic actuated micro gripper using an amplification mechanism. Sens Actuators A Phys 114:371–378CrossRef
Zurück zum Zitat Nachippan NM, Venkatesh A, Muniyappan M (2018) Modelling and analysis of piezoelectric microgripper for unmanned aerial vehicle. Mater Today Proc 5:19456–19462CrossRef Nachippan NM, Venkatesh A, Muniyappan M (2018) Modelling and analysis of piezoelectric microgripper for unmanned aerial vehicle. Mater Today Proc 5:19456–19462CrossRef
Zurück zum Zitat Nah S, Zhong Z (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A Phys 133:218–224CrossRef Nah S, Zhong Z (2007) A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A Phys 133:218–224CrossRef
Zurück zum Zitat Pérez R, Chaillet N, Domanski K, Janus P, Grabiec P (2006) Fabrication, modeling and integration of a silicon technology force sensor in a piezoelectric micro-manipulator. Sens Actuators A Phys 128(367–375):2006 Pérez R, Chaillet N, Domanski K, Janus P, Grabiec P (2006) Fabrication, modeling and integration of a silicon technology force sensor in a piezoelectric micro-manipulator. Sens Actuators A Phys 128(367–375):2006
Zurück zum Zitat Solano B, Wood D (2007) Design and testing of a polymeric microgripper for cell manipulation. Microelectronic Eng 84:1219–1222CrossRef Solano B, Wood D (2007) Design and testing of a polymeric microgripper for cell manipulation. Microelectronic Eng 84:1219–1222CrossRef
Zurück zum Zitat Sun X, Chen W, Fatikow S, Tian Y, Zhou R, Zhang J et al (2015) A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol 21:931–942CrossRef Sun X, Chen W, Fatikow S, Tian Y, Zhou R, Zhang J et al (2015) A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol 21:931–942CrossRef
Zurück zum Zitat Teyssieux D, Euphrasie S, Cretin B (2011) MEMS in-plane motion/vibration measurement system based CCD camera. Measurement 44:2205–2216CrossRef Teyssieux D, Euphrasie S, Cretin B (2011) MEMS in-plane motion/vibration measurement system based CCD camera. Measurement 44:2205–2216CrossRef
Zurück zum Zitat Uchino K (2008) Piezoelectric actuators 2006. J Electroceramics 20:301–311CrossRef Uchino K (2008) Piezoelectric actuators 2006. J Electroceramics 20:301–311CrossRef
Zurück zum Zitat Wang F, Liang C, Tian Y, Zhao X, Zhang D (2014) Design of a piezoelectric-actuated microgripper with a three-stage flexure-based amplification. IEEE/ASME Trans Mechatron 20:2205–2213CrossRef Wang F, Liang C, Tian Y, Zhao X, Zhang D (2014) Design of a piezoelectric-actuated microgripper with a three-stage flexure-based amplification. IEEE/ASME Trans Mechatron 20:2205–2213CrossRef
Zurück zum Zitat Wang F, Liang C, Tian Y, Zhao X, Zhang D (2016) Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation. IEEE/ASME Trans Mechatron 21:1262–1271CrossRef Wang F, Liang C, Tian Y, Zhao X, Zhang D (2016) Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation. IEEE/ASME Trans Mechatron 21:1262–1271CrossRef
Zurück zum Zitat Wang F, Huo Z, Liang C, Shi B, Tian Y, Zhao X et al (2018) A novel actuator-internal micro/nano positioning stage with an arch-shape bridge type amplifier. IEEE Trans Ind Electron 66(12):9161–9172CrossRef Wang F, Huo Z, Liang C, Shi B, Tian Y, Zhao X et al (2018) A novel actuator-internal micro/nano positioning stage with an arch-shape bridge type amplifier. IEEE Trans Ind Electron 66(12):9161–9172CrossRef
Zurück zum Zitat Wang F, Shi B, Tian Y, Huo Z, Zhao X, Zhang D (2019) Design of a novel dual-axis micromanipulator with an asymmetric compliant structure. IEEE/ASME Trans Mechatronics 24:656–665CrossRef Wang F, Shi B, Tian Y, Huo Z, Zhao X, Zhang D (2019) Design of a novel dual-axis micromanipulator with an asymmetric compliant structure. IEEE/ASME Trans Mechatronics 24:656–665CrossRef
Zurück zum Zitat Zhong Z, Chan S (2007) Investigation of a gripping device actuated by SMA wire. Sens Actuators A Phys 136:335–340CrossRef Zhong Z, Chan S (2007) Investigation of a gripping device actuated by SMA wire. Sens Actuators A Phys 136:335–340CrossRef
Metadaten
Titel
A novel design and fabrication of a micro-gripper for manipulation of micro-scale parts actuated by a bending piezoelectric
verfasst von
Hossein Mehrabi
Mohsen Hamedi
Iman Aminzahed
Publikationsdatum
03.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04696-6

Weitere Artikel der Ausgabe 5/2020

Microsystem Technologies 5/2020 Zur Ausgabe

Neuer Inhalt