Skip to main content
Erschienen in: Cluster Computing 2/2023

27.09.2022

A novel design of a dependable and fault-tolerant multi-layer banyan network based on a crossbar switch for nano communication

verfasst von: Shaoxi Li, Jing Liu

Erschienen in: Cluster Computing | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Circuits based on quantum technology process data significantly quicker than circuits based on standard transistor-based technologies. The polarization of electrons provides digital information in Quantum-Dot Cellular Automata (QCA) technology. Making effective electronic circuits is one of the applications of this QCA technology in the field of nano communications. A nanonetwork, also known as a nano-scale network, is a collection of interconnected nanomachines capable of computation, data storage, sensing, and actuation. They can be built in various ways, with different phases of switching components and connecting links. On the other hand, manufacturing flaws and variances continue to be a concern with QCA-based circuits. Designing a fault-tolerant circuit for a banyan network is one of the most appealing topics in QCA nanotechnology because the banyan network is one of the most common and multistage communication architecture operations that are needed in all computing systems. The banyan network can be highly beneficial and supportive in designing any switching circuit. In the present article, we provide a novel circuit design technique for fault-tolerant banyan network circuits utilizing QCA technology, which is a new method for implementing the nano communications circuit. Furthermore, we used QCADesigner-E software to check simulated findings for a suggested circuit with other researchers for results and analysis. The fault-tolerant banyan network circuit that has been proposed employs 516 QCA cells, an area of 0.38 µm2, and has a 1.5 clock cycle delay in achieving its goal. Furthermore, simulation outcomes show that the recommended banyan network circuit with a fault-tolerant can achieve a 70% fault tolerance against four faults: cell missing, cell displacement, extra cell, and cell rotation. These findings enrich the literature on digital transformation, fault-tolerant designs in nano-based technologies, and nano communication and provide implications for the transformation of nanonetworks and networks on the chip.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Suganthi, K., Malarvizhi, S.: Millimeter wave CMOS minimum noise amplifier for automotive radars in the frequency band (60–66 GHZ). Clust. Comput. 22(5), 11755–11764 (2019)CrossRef Suganthi, K., Malarvizhi, S.: Millimeter wave CMOS minimum noise amplifier for automotive radars in the frequency band (60–66 GHZ). Clust. Comput. 22(5), 11755–11764 (2019)CrossRef
2.
Zurück zum Zitat Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997)CrossRef Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997)CrossRef
3.
Zurück zum Zitat Weste, N.H., Eshraghian, K.: Principles of CMOS VLSI design: a systems perspective. Addison-Wesley Longman Publishing Co., Inc, New York (1985) Weste, N.H., Eshraghian, K.: Principles of CMOS VLSI design: a systems perspective. Addison-Wesley Longman Publishing Co., Inc, New York (1985)
4.
Zurück zum Zitat Lent, C. S., Tougaw, P. D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proceedings Workshop on Physics and Computation. PhysComp'94, IEEE, pp. 5–13 (1994) Lent, C. S., Tougaw, P. D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proceedings Workshop on Physics and Computation. PhysComp'94, IEEE, pp. 5–13 (1994)
5.
Zurück zum Zitat Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)CrossRef
6.
Zurück zum Zitat Farrelly, T.: A review of quantum cellular automata. Quantum 4, 368 (2020)CrossRef Farrelly, T.: A review of quantum cellular automata. Quantum 4, 368 (2020)CrossRef
7.
Zurück zum Zitat Guedes, T., Jesus, L.A., Ocaña, K.A., Drummond, L., de Oliveira, D.: Provenance-based fault tolerance technique recommendation for cloud-based scientific workflows: a practical approach. Clust. Comput. 23(1), 123–148 (2020)CrossRef Guedes, T., Jesus, L.A., Ocaña, K.A., Drummond, L., de Oliveira, D.: Provenance-based fault tolerance technique recommendation for cloud-based scientific workflows: a practical approach. Clust. Comput. 23(1), 123–148 (2020)CrossRef
9.
Zurück zum Zitat Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)CrossRef Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)CrossRef
10.
Zurück zum Zitat Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. J. Supercomput. 76(12), 10155–10185 (2020)CrossRef Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. J. Supercomput. 76(12), 10155–10185 (2020)CrossRef
11.
Zurück zum Zitat Ahmadpour, S.S., Mosleh, M.: A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr. Comput. 32(5), e5548 (2020)CrossRef Ahmadpour, S.S., Mosleh, M.: A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr. Comput. 32(5), e5548 (2020)CrossRef
12.
Zurück zum Zitat Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M., Tavakoli, M.B.: Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. J. Supercomput. 77(8), 8305–8325 (2021)CrossRef Foroutan, S.A.H., Sabbaghi-Nadooshan, R., Mohammadi, M., Tavakoli, M.B.: Investigating multiple defects on a new fault-tolerant three-input QCA majority gate. J. Supercomput. 77(8), 8305–8325 (2021)CrossRef
13.
Zurück zum Zitat Das, J.C., De, D.: Design of single layer banyan network using quantum-dot cellular automata for nanocommunication. Optik 172, 892–907 (2018)CrossRef Das, J.C., De, D.: Design of single layer banyan network using quantum-dot cellular automata for nanocommunication. Optik 172, 892–907 (2018)CrossRef
14.
Zurück zum Zitat Skanda, C., Srivatsa, B., Premananda, B: Design of Compact and Energy Efficient Banyan Network for Nano Communication. In: 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), IEEE, pp. 135–140 (2021) Skanda, C., Srivatsa, B., Premananda, B: Design of Compact and Energy Efficient Banyan Network for Nano Communication. In: 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), IEEE, pp. 135–140 (2021)
15.
Zurück zum Zitat Majeed, A.H., Zainal, M.S., Alkaldy, E.: Quantum-dot cellular automata. Int. J. Integrat. Eng. 11(8), 143–158 (2019) Majeed, A.H., Zainal, M.S., Alkaldy, E.: Quantum-dot cellular automata. Int. J. Integrat. Eng. 11(8), 143–158 (2019)
16.
Zurück zum Zitat Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011) Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech 2, 978–981 (2011)
17.
Zurück zum Zitat Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multi-layer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circuits Syst. II Express Briefs 66(6), 963–967 (2018) Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multi-layer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circuits Syst. II Express Briefs 66(6), 963–967 (2018)
18.
Zurück zum Zitat Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)CrossRef Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)CrossRef
19.
Zurück zum Zitat Navi, K., Chabi, A.M., Sayedsalehi, S.: A novel seven input majority gate in quantum-dot cellular automata. Int. J. Comput. Sci. Issues (IJCSI) 9(1), 84 (2012) Navi, K., Chabi, A.M., Sayedsalehi, S.: A novel seven input majority gate in quantum-dot cellular automata. Int. J. Comput. Sci. Issues (IJCSI) 9(1), 84 (2012)
20.
Zurück zum Zitat Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. arXiv preprintarXiv:1204.2048, (2012). Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. arXiv preprintarXiv:​1204.​2048, (2012).
21.
Zurück zum Zitat Safoev, N., Jeon, J.-C.: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020)CrossRef Safoev, N., Jeon, J.-C.: A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020)CrossRef
22.
Zurück zum Zitat Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef
23.
Zurück zum Zitat Walus, K., Jullien, G., Dimitrov, V.: Computer arithmetic structures for quantum cellular automata. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2: IEEE, pp. 1435–1439 (2003) Walus, K., Jullien, G., Dimitrov, V.: Computer arithmetic structures for quantum cellular automata. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2: IEEE, pp. 1435–1439 (2003)
24.
Zurück zum Zitat Das, J., Alam, S.M., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. IEEE J. Emerging Select. Top. Circuits Syst. 1(3), 267–276 (2011)CrossRef Das, J., Alam, S.M., Bhanja, S.: Low power magnetic quantum cellular automata realization using magnetic multi-layer structures. IEEE J. Emerging Select. Top. Circuits Syst. 1(3), 267–276 (2011)CrossRef
25.
Zurück zum Zitat Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale. In 22nd IEEE VLSI Test Symposium, 2004. Proceedings., IEEE, pp. 291–296 (2004). Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale. In 22nd IEEE VLSI Test Symposium, 2004. Proceedings., IEEE, pp. 291–296 (2004).
26.
Zurück zum Zitat Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)CrossRef Seyedi, S., Darbandi, M., Navimipour, N.J.: Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185, 827–837 (2019)CrossRef
27.
Zurück zum Zitat Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015)CrossRef Farazkish, R.: A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electron. 14(2), 506–514 (2015)CrossRef
28.
Zurück zum Zitat Farazkish, R.: A new quantum-dot cellular automata fault-tolerant five-input majority gate. J. Nanopart. Res. 16(2), 1–7 (2014)CrossRef Farazkish, R.: A new quantum-dot cellular automata fault-tolerant five-input majority gate. J. Nanopart. Res. 16(2), 1–7 (2014)CrossRef
29.
Zurück zum Zitat Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39(6), 426–433 (2015)CrossRef Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39(6), 426–433 (2015)CrossRef
30.
Zurück zum Zitat Ahmadpour, S.-S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018)CrossRef Ahmadpour, S.-S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018)CrossRef
31.
Zurück zum Zitat Shukla, M.K., Ratan, R., Oruç, A.Y.: A quantum self-routing packet switch. Vectors 12, 13 (2004) Shukla, M.K., Ratan, R., Oruç, A.Y.: A quantum self-routing packet switch. Vectors 12, 13 (2004)
32.
Zurück zum Zitat Das, J.C., De, D.: Quantum dot-cellular automata based cipher text design for nano-communication. In: 2012 International Conference on Radar, Communication and Computing (ICRCC), IEEE, pp. 224–229 (2012) Das, J.C., De, D.: Quantum dot-cellular automata based cipher text design for nano-communication. In: 2012 International Conference on Radar, Communication and Computing (ICRCC), IEEE, pp. 224–229 (2012)
33.
Zurück zum Zitat Das, S., De, D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization. In 2012 International conference on Radar, communication and computing (IcRcc), IEEE, pp. 43–47 (2012) Das, S., De, D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization. In 2012 International conference on Radar, communication and computing (IcRcc), IEEE, pp. 43–47 (2012)
34.
Zurück zum Zitat Tehrani, M.A., Safaei, F., Moaiyeri, M.H., Navi, K.: Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectron. J. 42(6), 913–922 (2011)CrossRef Tehrani, M.A., Safaei, F., Moaiyeri, M.H., Navi, K.: Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectron. J. 42(6), 913–922 (2011)CrossRef
35.
Zurück zum Zitat Silva, D.S., Sardinha, L.H., Vieira, M.A., Vieira, L.F., Neto, O.P.V.: Robust serial nanocommunication with QCA. IEEE Trans. Nanotechnol. 14(3), 464–472 (2015)CrossRef Silva, D.S., Sardinha, L.H., Vieira, M.A., Vieira, L.F., Neto, O.P.V.: Robust serial nanocommunication with QCA. IEEE Trans. Nanotechnol. 14(3), 464–472 (2015)CrossRef
36.
Zurück zum Zitat Sardinha, L.H., Costa, A.M., Neto, O.P.V., Vieira, L.F., Vieira, M.A.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31(12), 825–834 (2013)CrossRef Sardinha, L.H., Costa, A.M., Neto, O.P.V., Vieira, L.F., Vieira, M.A.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31(12), 825–834 (2013)CrossRef
37.
Zurück zum Zitat Seyedi, S., Navimipour, N.J.: An efficient structure for designing a nano-scale fault-tolerant 2: 1 multiplexer based on quantum-dot cellular automata. Optik 251, 168409 (2022)CrossRef Seyedi, S., Navimipour, N.J.: An efficient structure for designing a nano-scale fault-tolerant 2: 1 multiplexer based on quantum-dot cellular automata. Optik 251, 168409 (2022)CrossRef
Metadaten
Titel
A novel design of a dependable and fault-tolerant multi-layer banyan network based on a crossbar switch for nano communication
verfasst von
Shaoxi Li
Jing Liu
Publikationsdatum
27.09.2022
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe 2/2023
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-022-03698-w

Weitere Artikel der Ausgabe 2/2023

Cluster Computing 2/2023 Zur Ausgabe

Premium Partner